Fundamentals of Road Construction

Lecturer :

Marcin Bilski, BEng, PhD
Division of Road Engineering Institute of Civil Engineering room 324B (building A2) room K4 (hall A4) marcin.bilski@put.poznan.pl
 bilski.put.poznan.pl

Lecture 3

The subject of the lecture: Horizontal alignment

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

Coordinates of vertex points of horizontal alignment of the design road:

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

Point	Coordinates $[\mathrm{m}]$	
	X	Y
A	90,00	1400,00
$\mathrm{~W}_{1}$	655,05	1145,05
$\mathrm{~W}_{2}$	765,65	704,15
$\mathrm{~W}_{3}$	1356,55	283,45
$\mathrm{~W}_{4}$	2300,07	268,08
B	2485,00	50,00

Distance (length) between vertex points:

$$
\begin{aligned}
& \overline{A W_{1}}=\sqrt{\left(X_{W 1}-X_{A}\right)^{2}+\left(Y_{W 1}-Y_{A}\right)^{2}} \\
& \overline{\overline{A W_{1}}=\sqrt{(655,05 m-90,00 m)^{2}+(1145,05 m-1400,00 m)^{2}}}=619,90 \mathrm{~m}
\end{aligned}
$$

Section	Distance [m]
$\overline{A W_{1}}$	619,90
$\overline{W_{1} W_{2}}$	454,56
$\overline{W_{2} W_{3}}$	725,36
$\overline{W_{3} W_{4}}$	943,65
$\overline{W_{4} B}$	285,94
Σ	3029,41

Deflection angle of horizontal alignment of the design road:

CIRCULAR HORIZONTAL CURVES

$\mathrm{BC}=$ Beginning of Curve	$\mathrm{EC}=$ End of Curve
$\mathrm{PC}=$ Point of Curve	$\mathrm{PT}=$ Point of Tangent
$\mathrm{TC}=$ Tangent to Curve	$\mathrm{CT}=$ Curve to Tangent

Source: https://www.cpp.edu/~hturner/ce220/circular_curves.pdf

$$
\begin{gathered}
\cos \beta_{1}=\frac{{\overline{A W_{1}}}^{2}+{\overline{W_{1} W_{2}}}^{2}-{\overline{A W_{2}}}^{2}}{2 \cdot \overline{A W}_{1} \cdot \overline{W W}_{1} W_{2}} \\
\gamma_{1}=180^{\circ}-\beta_{1} \\
\cos \beta_{1}=\frac{(619,90)^{2}+(454,56)^{2}-(969,90)^{2}}{2 \cdot 619,90 \cdot 454,56}=-0,620696 \\
\beta_{1}=128,3669^{\circ} \\
\gamma_{1}=180^{\circ}-128,3669^{\circ}=51,6331^{\circ}
\end{gathered}
$$

	Deflection angle γ		
	$\left[{ }^{\circ}\right]$		$[\mathrm{rad}]$
γ_{1}	$51^{\circ} 37^{\prime} 59^{\prime \prime}$	51,6331	0,901167
γ_{2}	$40^{\circ} 28^{\prime} 06^{\prime \prime}$	40,4684	0,706306
γ_{3}	$34^{\circ} 30^{\prime} 59^{\prime \prime}$	34,5163	0,602422
γ_{4}	$48^{\circ} 46^{\prime} 09^{\prime \prime}$	48,7691	0,851181

Tortuosity of section of the design road:

$K=\frac{\sum_{i=1}^{n}\left|\gamma_{n}\right|}{L}[\% / \mathrm{km}]$, where:
K - tortuosity of the section of the design road [$\% / \mathrm{km}$]
$\Sigma \gamma_{\mathrm{n}}$ - sum of the absolute deflection angles of horizontal alignment [${ }^{\circ}$]
L - distance between vertices [km]
n - number of vertices [-]
$K=\frac{51,6331^{\circ}+40,4684^{\circ}+34,5163^{\circ}+48,7691^{\circ}}{3,03}=\frac{175,3867^{\circ}}{3,03}$

Checking the requirements for the assumed radius of horizontal curves

The adoption of horizontal curve radius based on regulation of the Minister of Transport and Maritime Economy (consolidated text, Journal of Laws of 2016, item 124, as amended) - in short JoL16.
a) roll-over stability condition
$R_{\text {min }}=\frac{v^{2}}{g \cdot\left(\frac{b}{2 h} \pm i_{0}\right)},[\mathrm{m}]$ where:
v - speed $[\mathrm{m} / \mathrm{s}$]
$v=\left\{\begin{array}{l}v_{p}-\text { road of the class } \mathrm{Z} \text { and lower (desgin speed) } \\ v_{m}-\text { road of the class } \mathrm{G} \text { and upper (reliable speed) }\end{array}\right.$
g - acceleration due to gravity $\mathrm{g} \approx 9,81 \mathrm{~m} / \mathrm{s}^{2}$
b- wheelbase vehicle (passenger car $1.5-1.8 \mathrm{~m}$, lorry $2.0-2.4 \mathrm{~m}$)
h - height of the center of gravity of the vehicle (passenger car 0.9-1.2 m, lorry $1.5-1.6 \mathrm{~m}$)
i_{0} - the transverse slope of the road on the curve $[-]$

Rzeczpospolita Polska

$$
R_{\min }= \begin{cases}\frac{v_{p}{ }^{2}}{g \cdot\left(\frac{b}{2 h}-i_{0}\right)}[m] & \text { - slope of the trafficway in the shape of a canopy } \\ \frac{v_{p}{ }^{2}}{g \cdot\left(\frac{b}{2 h}+i_{0}\right)}[m] & \text { - one-side slope of the trafficway }\end{cases}
$$

$$
R_{\min }^{(2)}=\frac{16,67^{2}}{9,81 \cdot\left(\frac{1,50}{2 \cdot 1,20}+0,04\right)}=42,60 \mathrm{~m}
$$

	$\mathbf{i}_{\mathbf{o}}[\%]$	$\mathbf{R}_{\text {min }}{ }^{(2)}$	
		$\mathbf{+ i}_{\mathbf{o}}$	$\mathbf{i}_{\mathbf{o}}$
W1	4,0	$\mathbf{4 2 , 6 0}$	-
W2	3,5	$\mathbf{4 2 , 9 2}$	-
W3	3,0	$\mathbf{4 3 , 2 5}$	-
W4	5,0	$\mathbf{4 1 , 9 7}$	-

b) slip stability condition

$$
R_{\min }=\frac{v^{2}}{g \cdot\left(\varphi_{R} \pm i_{0}\right)}[\mathrm{m}] \text {, where: }
$$

v - speed [m / s]
$v=\left\{\begin{array}{l}v_{p}-\text { road of the class } \mathrm{Z} \text { and lower (desgin speed) } \\ v_{m}-\text { road of the class } \mathrm{G} \text { and upper (reliable speed) }\end{array}\right.$
g - acceleration due to gravity $\mathrm{g} \approx 9,81 \mathrm{~m} / \mathrm{s}^{2}$
φ_{R} - coefficient of transverse adhesion of the tire to the road
i_{0} - the transverse slope of the road on the curve [-]

$$
R_{\min }= \begin{cases}\frac{v_{p}{ }^{2}}{g \cdot\left(\varphi_{R}-i_{0}\right)}[m] & \text { - slope of the trafficway in the shape of a canopy } \\ \frac{v_{p}{ }^{2}}{g \cdot\left(\varphi_{R}+i_{0}\right)}[m] & \text { - one-side slope of the trafficway }\end{cases}
$$

$$
\varphi_{R}=0,2[-]
$$

wet asphalt surface

$$
R_{\min }^{(3)}=\frac{16,67^{2}}{9,81 \cdot(0,20+0,04)}=118,03 \mathrm{~m}
$$

	$i_{0}[\%]$	$\mathbf{R}_{\text {min }}{ }^{(3)}[\mathbf{m}]$	
		$\mathbf{i}_{\mathbf{o}}$	$-\mathbf{i}_{\mathbf{o}}$
W1	4,0	$\mathbf{1 1 8 , 0 3}$	-
W2	3,5	$\mathbf{1 2 0 , 5 4}$	-
W3	3,0	$\mathbf{1 2 3 , 1 6}$	-
W4	5,0	$\mathbf{1 1 3 , 3 1}$	-

c) driving comfort condition

$\left[R_{\min }=\frac{v^{2}}{g \cdot\left(\mu \pm i_{0}\right)} \quad[\mathrm{m}]\right.$, where:
v - speed [m / s]
$v=\left\{\begin{array}{l}v_{P}-\text { road of the class } \mathrm{Z} \text { and lower (desgin speed) } \\ v_{m}-\text { road of the class } \mathrm{G} \text { and upper (reliable speed) }\end{array}\right.$
g - acceleration due to gravity $g \approx 9,81 \mathrm{~m} / \mathrm{s}^{2}$
μ - transverse acceleration factor [-]
i_{0} - the transverse slope of the road on the curve [-]
$R_{\min }= \begin{cases}\frac{v_{p}{ }^{2}}{g \cdot\left(\mu-i_{0}\right)}[m] & \text { - slope of the trafficway in the shape of a canopy } \\ \frac{v_{p}{ }^{2}}{g \cdot\left(\mu+i_{0}\right)}[m] & \text { - one-side slope of the trafficway }\end{cases}$

It stands out due to the driving comfort:

- $\mu=0,02-$ a passenger who does not observe the road, will not distinguish driving between section of straight or curved; the driver feels no tension
$-\mu=0,06-$ a passenger has a poor feel of driving along the curvilinear section; the driver feels small tension
- $\mu=0,10-$ a passenger feels the driving along the curvilinear section, but does not feel discomfort: the driver clearly feels the tension
$-\mu=0,17-$ driving along a curvilinear section is inconvenient for everyone
adopted $\boldsymbol{\mu}=\mathbf{0 , 1 0}[-], \quad$ possibly $\mu=0,12[-]$

$$
R_{\min }^{(4)}=\frac{16,67^{2}}{9,81 \cdot(0,10+0,04)}=202,34 \mathrm{~m}
$$

	$\mathbf{i}_{\mathbf{o}}[\%]$	$\mathbf{R}_{\text {min }^{(4)}}$	
		$+\mathbf{i}_{\mathbf{o}}$	$-\mathbf{i}_{\mathbf{o}}$
W1	4,0	$\mathbf{2 0 2 , 3 4}$	-
W2	3,5	$\mathbf{2 0 9 , 8 3}$	-
W3	3,0	$\mathbf{2 1 7 , 9 0}$	-
W4	5,0	$\mathbf{1 8 8 , 8 5}$	-

Unia Europejska

JUXTAPOSITION $\mathrm{R}_{\text {min }}$

	$\underset{\mathbf{R o L}^{(\mathbf{1})}}{{ }^{2}}$	$\begin{aligned} & \mathbf{R}_{\min }{ }^{(2)} \\ & \text { roll-over } \end{aligned}$	$\underset{\text { slip }}{\mathbf{R}_{\text {min }}{ }^{(3)}}$	$\begin{aligned} & \mathbf{R}_{\text {min }}{ }^{(4)} \\ & \text { comfort } \end{aligned}$	i_{0} [\%]	Adopted R [m]
W1	250	42,60	118,03	202,34	4,0	250
W2	320	42,92	120,54	209,83	3,5	320
W3	380	43,25	123,16	217,90	3,0	380
W4	200	41,97	113,31	188,85	5,0	200

Calculation of basic elements of a horizontal curve

Signs:
PŁK - $B C$ - begin of curve
$K Ł K-E C$ - end of curve
Z-E - external
T - tangent

Curve 1

$$
\gamma_{1}=51,6331^{\circ} \quad R_{1}=250 \mathrm{~m}
$$

- calculating the tangent of a curve

$$
T_{1}=R_{1} \cdot \operatorname{tg} \frac{\gamma_{1}}{2}=250 \cdot \operatorname{tg} \frac{51,6331}{2}=120,94 \mathrm{~m}
$$

- calculating the external of a curve

$$
Z_{1}=\frac{R_{1}}{\cos \frac{\gamma_{1}}{2}}-R_{1}=250 \cdot\left(\frac{1}{\cos \frac{51,6331^{\circ}}{2}}-1\right)=27,72 m
$$

- curve length calculation

$$
D_{1}=R_{1} \cdot \frac{\pi}{180} \cdot \gamma_{1}=250 \cdot \frac{\pi}{180} \cdot 51,6331^{\circ}=225,29 \mathrm{~m}
$$

- calculation of the widening on a curve

$$
\frac{40}{R}=\frac{40}{250}=0,16 \mathrm{~m}
$$

The widening is used when its value is greater than or equal to 0.2 m

	$\mathrm{R}[\mathrm{m}]$	$\gamma\left[{ }^{\circ}\right]$	$\mathrm{T}[\mathrm{m}]$	$\mathrm{Z}[\mathrm{m}]$	$\mathrm{D}[\mathrm{m}]$	$\frac{40}{R}$	$\mathrm{p}[\mathrm{m}]$
Curve 1	250	51,6331	120,94	27,72	225,29	0,16	-
Curve 2	320	40,4684	117,95	21,05	226,02	0,13	-
Curve 3	380	34,5163	118,05	17,91	228,92	0,11	-
Curve 4	200	48,7691	90,66	19,59	170,24	0,20	0,20

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

Unia Europejska

Determination of the clothoid a-parameter

Source: https://pwayblog.com/2016/07/03/the-clothoid/

Unia Europejska

The road ramp

Source: https://docplayer.pl/docs-images/64/51106521/images/11-1.jpg

Unia Europejska

Determination of the clothoid a-parameter

a) dynamics condition

$$
a_{\min }=\sqrt{\frac{v^{3}}{k}}[m], \text { where: }
$$

a - clothoid a-parameter [m]
v - speed [m/s]
$v=v_{p} \quad$ for all road classes $\Rightarrow v=v_{P}=60 \frac{\mathrm{~km}}{\mathrm{~h}} \Rightarrow v=16,67 \frac{\mathrm{~m}}{\mathrm{~s}}$
k - permissible increase centripetal acceleration $\quad \Rightarrow V_{P}=60 \frac{\mathrm{~km}}{\mathrm{~h}} \Rightarrow k=0,7 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}$

$$
a_{\min }=\sqrt{\frac{16,67^{3}}{0,7}}=81,35 m
$$

b) aesthetics condition

$$
\begin{gathered}
a_{\min }=\frac{1}{3} R[m] \\
a \quad=R[m], \text { where: }
\end{gathered}
$$

R- radius of the horizontal curve [m]

$$
\begin{gathered}
a_{1 \min }=\frac{1}{3} \cdot 200=66,67 \mathrm{~m} \\
a_{1 \text { max }}=200 \mathrm{~m}
\end{gathered}
$$

	$\mathrm{R}[\mathrm{m}]$	$\mathbf{a}_{\text {min }}[\mathrm{m}]$	$\mathbf{a}_{\max }[\mathrm{m}]$
curve 1	250	$\mathbf{8 3 , 3 3}$	$\mathbf{2 5 0}$
curve 2	320	$\mathbf{1 0 6 , 6 7}$	$\mathbf{3 2 0}$
curve 3	380	$\mathbf{1 2 6 , 6 7}$	$\mathbf{3 8 0}$
curve 4	200	$\mathbf{6 6 , 6 7}$	$\mathbf{2 0 0}$

c) construction of a road ramp condition

$a_{\min }=\sqrt{\frac{R \cdot B}{2} \cdot \frac{i_{n}+i_{o}}{i_{d \max }}}[\mathrm{~m}]$, where:
R - radius of the horizontal curve [m]
B - roadway width [m]; traffic line width outside the built-up area for a Z-class road
is $2.75-3.00 \mathrm{~m}$; adopted $6,00 \mathrm{~m}$
i_{o} - the transverse slope of the roadway on a curvilinear section [-]
i_{n} - the transverse slope of the roadway on a straight section
i_{d} - additional slope of the roadway on the road ramp [-]
$i_{d \text { min }} \leq i_{d} \leq i_{d \text { max }}$
$i_{d \text { min }}=0,1 \cdot \frac{B}{2}=0,1 \cdot \frac{6,00}{2}=0,3 \%$
$i_{d \max }=1,6 \% \quad$ for design speed $\quad v_{P}=60 \frac{\mathrm{~km}}{\mathrm{~h}}$
$0,003 \leq i_{d} \leq 0,016 \quad$ adopted $\quad i_{d}=0,016$

$$
a_{1 \min }=\sqrt{\frac{250 \cdot 6,00}{2} \cdot \frac{0,02+0,04}{0,016}}=53,03 \mathrm{~m}
$$

	$\mathrm{R}[\mathrm{m}]$	$\mathrm{B}[\mathrm{m}]$	$\mathrm{i}_{\mathrm{n}}[\%]$	$\mathrm{i}_{\mathrm{o}}[\%]$	$\mathrm{i}_{\mathrm{d}}[\%]$	$\mathrm{a}_{\text {min }}[\mathrm{m}]$
curve 1	250	6,00	2,0	4,0	1,6	$\mathbf{5 3 , 0 3}$
curve 2	320	6,00	2,0	3,5	1,6	$\mathbf{5 7 , 4 5}$
curve 3	380	6,00	2,0	3,0	1,6	$\mathbf{5 9 , 6 9}$
curve 4	200	6,40	2,0	5,0	1,6	$\mathbf{5 2 , 9 2}$

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17
d) widening of the roadway condition
calculated for the horizontal curves which have widening
$a_{\min }=1,86 \cdot \sqrt[4]{R^{3} \cdot p_{c}} \quad[\mathrm{~m}]$, where:
R - radius of the horizontal curve [m]
p_{c} - complete widening of the roadway on the curve [m]
$a_{4 \text { min }}=1,86 \cdot \sqrt[4]{200^{3} \cdot 0,4}=78,67 \mathrm{~m}$
e) geometric condition
$a_{\max }=R \cdot \sqrt{\gamma}[\mathrm{~m}]$, where:

R - radius of the horizontal curve Iml
γ-deflection angle of the horizontal curve [rad]
$a_{1 \max }=250 \cdot \sqrt{0,901167}=237,32 \mathrm{~m}$

	$\mathbf{R}[\mathrm{m}]$	$\gamma[\mathrm{rad}]$	$\mathbf{a}_{\max }[\mathrm{m}]$
curve 1	250	0,901167	$\mathbf{2 3 7 , 3 2}$
curve 2	320	0,706306	$\mathbf{2 6 8 , 9 3}$
curve 3	380	0,602422	$\mathbf{2 9 4 , 9 4}$
curve 4	200	0,851181	$\mathbf{1 8 4 , 5 2}$

f) horizontal curve offset condition

recommended condition
for $\quad H_{\text {min }}=0,50 m \Rightarrow a_{\text {min }}=1,863 \cdot R^{\frac{3}{4}}[\mathrm{~m}]$,
for $H_{\text {max }}=2,50 \mathrm{~m} \Rightarrow a_{\text {max }}=2,783 \cdot R^{\frac{3}{4}} \quad[\mathrm{~m}]$, where:
H - horizntal curve offset [m]

$$
\begin{aligned}
& a_{1 \min }=1,863 \cdot 250^{\frac{3}{4}}=117,00 \mathrm{~m} \\
& a_{1 \max }=2,783 \cdot 250^{\frac{3}{4}}=174,97 \mathrm{~m}
\end{aligned}
$$

	$\mathrm{R}[\mathrm{m}]$	$\mathbf{a}_{\min }[\mathrm{m}]$	$\mathbf{a}_{\text {max }}[\mathrm{m}]$
curve 1	250	$\mathbf{1 1 7 , 0 0}$	$\mathbf{1 7 4 , 9 7}$
curve 2	320	$\mathbf{1 4 0 , 8 0}$	$\mathbf{2 1 0 , 5 6}$
curve 3	380	$\mathbf{1 6 0 , 1 7}$	$\mathbf{2 3 9 , 5 3}$
curve 4	200	$\mathbf{9 8 , 9 7}$	$\mathbf{1 4 8 , 0 1}$

Unia Europejska
g) proportionality condition
recommended condition
for $\mathrm{L}: \mathrm{\ell}: \mathrm{L}=1: 4: 1 \Rightarrow a_{\min }=R \cdot \sqrt{\frac{\gamma}{5}}[\mathrm{~m}]$,
for $\mathrm{L}: \mathrm{E}: \mathrm{L}=1: 1: 1 \Rightarrow a_{\max }=R \cdot \sqrt{\frac{\gamma}{2}} \quad[\mathrm{~m}]$, gdzie:
R- radius of the horizontal curve [m]
γ - deflection angle [rad]

$$
\begin{aligned}
& a_{1 \min }=250 \cdot \sqrt{\frac{0,901167}{5}}=106,13 \mathrm{~m} \\
& a_{1 \max }=250 \cdot \sqrt{\frac{0,901167}{2}}=167,81 \mathrm{~m}
\end{aligned}
$$

	$\mathrm{R}[\mathrm{m}]$	$\gamma[\mathrm{rad}]$	$\mathbf{a}_{\min }[\mathrm{m}]$	$\mathbf{a}_{\max }[\mathrm{m}]$
curve 1	250	0,901167	$\mathbf{1 0 6 , 1 3}$	$\mathbf{1 6 7 , 8 1}$
curve 2	320	0,706306	$\mathbf{1 2 0 , 2 7}$	$\mathbf{1 9 0 , 1 7}$
curve 3	380	0,602422	$\mathbf{1 3 1 , 9 0}$	$\mathbf{2 0 8 , 5 5}$
curve 4	200	0,851181	$\mathbf{8 2 , 5 2}$	$\mathbf{1 3 0 , 4 7}$

Signs:
$\mathrm{L}-\mathrm{Cl}$ - the length of the clothoid $t-\mathrm{Cu}$ - the length of the curve

JUXTAPOSITION OF A-PARAMETER VALUES

	\mathbf{R} [m]	$\begin{aligned} & \mathbf{a}_{\text {min }} \quad[\mathrm{m}] \\ & \text { dyn } \end{aligned}$	$\begin{aligned} & \mathbf{a}_{\text {min }}[\mathrm{m}] \\ & \text { asth } \end{aligned}$	$\begin{aligned} & \mathbf{a}_{\text {min }}[\mathrm{m}] \\ & \text { const } \end{aligned}$	$\begin{aligned} & \mathbf{a}_{\min }[\mathrm{m}] \\ & \text { widening } \end{aligned}$	$\begin{aligned} & \mathbf{a}_{\min }[\mathrm{m}] \\ & \text { offset } \end{aligned}$	$\begin{aligned} & \mathbf{a}_{\text {min }}[\mathrm{m}] \\ & \text { prop } \end{aligned}$
curve 1	250	81,33	83,33	53,03	-	117,00	106,13
curve 2	320	81,33	106,67	57,45	-	140,80	120,27
curve 3	380	81,33	126,67	59,69	-	160,17	131,90
curve 4	200	81,33	66,67	52,92	78,67	98,97	82,52

	$\mathbf{R}[\mathrm{m}]$	$\mathbf{a}_{\max }[\mathrm{m}]$ asth	$\mathbf{a}_{\max }$ geom geo	$\mathbf{a}_{\text {max }}$ offset	$\mathbf{a}_{\text {max }}$ prop
curve 1	250	250	237,32	174,97	167,81
curve 2	320	320	268,93	210,56	190,17
curve 3	380	380	294,94	239,53	208,55
curve 4	200	200	184,52	148,01	130,47

ADOPTION OF A-PARAMETER VALUE

$$
a_{\min }^{(\max)} \leq a \leq a_{\max }^{(\min)}
$$

	$\mathbf{R}[\mathrm{m}]$	$\mathbf{a}_{\text {min }}{ }^{(\max)}[\mathrm{m}]$	$\mathbf{a}_{\text {max }}{ }^{(\text {min })}[\mathrm{m}]$	$\mathbf{a}[\mathrm{m}]$
curve 1	250	117,00	167,81	$\mathbf{1 3 6 , 9 3}$
curve 2	320	140,80	190,17	$\mathbf{1 5 4 , 9 2}$
curve 3	380	160,17	208,55	$\mathbf{1 6 9 , 9 4}$
curve 4	200	98,97	130,47	$\mathbf{1 0 9 , 5 5}$

Uczelnia zintegrowana na przyszłość

Determination of characteristic values of a colloidal transition curve

Source: https://pwayblog.com/2016/07/03/the-clothoid/

Unia Europejska
a) clothoid length
$L=\frac{a^{2}}{R}[\mathrm{~m}]$, where:
L- length of the clothoid [m]
a- clothoid a-parameter [m]
R- radius of horizntal curve [m]

$$
L=\frac{136,93^{2}}{250}=75,00 \mathrm{~m}
$$

	$\mathrm{R}[\mathrm{m}]$	$\mathrm{a}[\mathrm{m}]$	$\mathrm{L}[\mathrm{m}]$
curve 1	250	136,93	$\mathbf{7 5 , 0 0}$
curve 2	320	154,92	$\mathbf{7 5 , 0 0}$
curve 3	380	169,94	$\mathbf{7 6 , 0 0}$
curve 4	200	109,55	$\mathbf{6 0 , 0 0}$

Unia Europejska
b) tangent angle at the end of the transition curve

$$
\begin{gathered}
\tau=\frac{L}{2 \cdot R} \\
\tau_{\min }=3^{\circ} \leq \tau \leq \tau_{\max }=30^{\circ}, \text { where: }
\end{gathered}
$$

τ - tangent angle at the end of the transition curve [rad]
L - length of the clothoid [m]
R - radius of the horizontal curve [m]

$$
\tau=\frac{75,00}{2 \cdot 250}=0,150000 \quad \mathrm{rad}
$$

	$\mathbf{R}[\mathrm{m}]$	$\mathbf{L}[\mathrm{m}]$	$\tau[\mathrm{rad}]$	$\tau\left[{ }^{\circ}\right]$	
curve 1	250	75,00	0,150000	$8^{\circ} 35^{\prime} 40^{\prime \prime}$	$\mathbf{8 , 5 9 4 4}$
curve 2	320	75,00	0,117188	$6^{\circ} 42^{\prime} 52^{\prime \prime}$	$\mathbf{6 , 7 1 4 3}$
curve 3	380	76,00	0,100000	$5^{\circ} 43^{\prime} 46^{\prime \prime}$	$\mathbf{5 , 7 2 9 6}$
curve 4	200	60,00	0,150000	$8^{\circ} 35^{\prime} 40^{\prime \prime}$	$\mathbf{8 , 5 9 4 4}$

For all transition curve the condition $\tau_{\min }=3^{\circ} \leq \tau \leq \tau_{\max }=30^{\circ}$ is fulfilled
c) coordinates of the end of the transition curve

$$
X=L-\frac{L^{5}}{40 a^{4}}+\frac{L^{9}}{3456 a^{8}}-(\ldots)[m] \quad Y=\frac{L^{3}}{6 a^{2}}-\frac{L^{7}}{336 a^{6}}+\frac{L^{11}}{42240 a^{10}}-(\ldots)[m], \quad \text { where: }
$$

X- coordinates of the end of the transition curve [m]
Y- coordinates of the end of the transition curve [m]

$$
X=75,00-\frac{75,00^{5}}{40 \cdot 136,93^{4}}+(\ldots)=74,83 m
$$

$$
Y=\frac{75,00^{3}}{6 \cdot 136,93^{2}}-\frac{75,00^{7}}{336 \cdot 136,93^{6}}+(\ldots)=3,74 m
$$

	$\mathbf{L}[\mathrm{m}]$	$\mathbf{a}[\mathrm{m}]$	$\mathbf{X}[\mathrm{m}]$	$\mathbf{Y}[\mathrm{m}]$
curve 1	75,00	136,93	$\mathbf{7 4 , 8 3}$	$\mathbf{3 , 7 4}$
curve 2	75,00	154,92	$\mathbf{7 4 , 9 0}$	$\mathbf{2 , 9 3}$
curve 3	76,00	169,94	$\mathbf{7 5 , 9 2}$	$\mathbf{2 , 5 3}$
curve 4	60,00	109,55	$\mathbf{5 9 , 8 7}$	$\mathbf{3 , 0 0}$

d) coordinates of the center of horizontal curve

$$
X_{s}=X-(R \cdot \sin \tau)[m]
$$

$$
Y_{s}=Y+(R \cdot \cos \tau)[m], \text { where: }
$$

X_{S} - coordinates of the center of reduced horizontal curve $[\mathrm{m}]$
$\mathrm{Y}_{\mathrm{S}^{-}}$coordinates of the center of reduced horizontal curve [m]
τ - deflection angle of tangent on the end of the transition curve [rad]
$X_{s}=74,83-(250 \cdot \sin 0,150000)=37,47 m \quad Y_{s}=3,74+(250 \cdot \cos 0,150000)=250,94 m$

	$\mathbf{R}[\mathrm{m}]$	$\mathbf{X}[\mathrm{m}]$	$\mathbf{Y}[\mathrm{m}]$	$\tau[\mathrm{rad}]$	$\mathbf{X}_{\mathbf{s}}[\mathrm{m}]$	$\mathbf{Y}_{\mathbf{s}}[\mathrm{m}]$
curve 1	250	74,83	3,74	0,150000	$\mathbf{3 7 , 4 7}$	$\mathbf{2 5 0 , 9 4}$
curve 2	320	74,90	2,93	0,117188	$\mathbf{3 7 , 4 8}$	$\mathbf{3 2 0 , 7 3}$
curve 3	380	75,92	2,53	0,100000	$\mathbf{3 7 , 9 9}$	$\mathbf{3 8 0 , 6 3}$
curve 4	200	59,87	3,00	0,150000	$\mathbf{2 9 , 9 8}$	$\mathbf{2 0 0 , 7 5}$

Unia Europejska
e) retraction of the horizontal curve
$H=Y-R \cdot(1-\cos \tau)[m]$
$H_{\text {min }}=0,5 m \leq H \leq H_{\text {max }}=2,5 m$, where:
H - retraction of the horizontal curve $[\mathrm{m}]$
τ - deflection angle of the tangent on the end of the horizontal curve [rad]
$H=Y-R \cdot(1-\cos \tau)=3,74-250 \cdot(1-\cos 0,150000)=0,94 m$

	$\mathbf{R}[\mathrm{m}]$	$\mathbf{Y}[\mathrm{m}]$	$\tau[\mathrm{rad}]$	$\mathbf{H}[\mathrm{m}]$
curve 1	250	3,74	0,150000	$\mathbf{0 , 9 4}$
curve 2	320	2,93	0,117188	$\mathbf{0 , 7 3}$
curve 3	380	2,53	0,100000	$\mathbf{0 , 6 3}$
curve 4	200	3,00	0,150000	$\mathbf{0 , 7 5}$

For all transition curve the condition $\quad H_{\min }=0,5 m \leq H \leq H_{\max }=2,5 m \quad$ is fulfilled

f) external

$N=\frac{Y}{\cos \tau} \quad[\mathrm{~m}]$, where:
N - external of the transition curve [m]
τ - deflection angle of the tangent on the end of the horizontal curve [rad]

$$
N=\frac{3,74}{\cos 0,150000}=3,79 \mathrm{~m}
$$

	$\mathbf{Y}[\mathrm{m}]$	$\tau[\mathrm{rad}]$	$\mathbf{N}[\mathrm{m}]$
curve 1	3,74	0,150000	$\mathbf{3 , 7 9}$
curve 2	2,93	0,117188	$\mathbf{2 , 9 5}$
curve 3	2,53	0,100000	$\mathbf{2 , 5 4}$
curve 4	3,00	0,150000	$\mathbf{3 , 0 3}$

g) short tangent
$T_{K}=\frac{Y}{\sin \tau} \quad[\mathrm{~m}]$, where:
T_{K} - short tangent $[\mathrm{m}]$
τ - deflection angle of the tangent on the end of the horizontal curve [rad]
$T_{K}=\frac{3,74}{\sin 0,150000}=25,05 \mathrm{~m}$

	$\mathbf{Y}[\mathrm{m}]$	$\tau[\mathrm{rad}]$	$\mathbf{T}_{\mathbf{K}}[\mathrm{m}]$
curve 1	3,74	0,150000	$\mathbf{2 5 , 0 5}$
curve 2	2,93	0,117188	$\mathbf{2 5 , 0 3}$
curve 3	2,53	0,100000	$\mathbf{2 5 , 3 6}$
curve 4	3,00	0,150000	$\mathbf{2 0 , 0 4}$

Fundusze Europejskie
h) long tangent
$T_{D}=X-Y \cdot \operatorname{ctg} \tau \quad[\mathrm{~m}]$, where:
T_{D} - long tangent [m]
τ - deflection angle of the tangent on the end of the horizontal curve [rad]
$T_{D}=74,83-3,74 \cdot \operatorname{ctg} 0,150000=50,06 \mathrm{~m}$

	$\mathbf{X}[\mathrm{m}]$	$\mathbf{Y}[\mathrm{m}]$	$\tau[\mathrm{rad}]$	$\mathbf{T}_{\mathbf{D}}[\mathrm{m}]$
curve 1	74,83	3,74	0,150000	$\mathbf{5 0 , 0 6}$
curve 2	74,90	2,93	0,117188	$\mathbf{5 0 , 0 4}$
curve 3	75,92	2,53	0,100000	$\mathbf{5 0 , 6}$
curve 4	59,87	3,00	0,150000	$\mathbf{4 0 , 0 5}$

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

i) T_{s} section

$T_{S}=(R+H) \cdot \operatorname{tg} \frac{\gamma}{2}[\mathrm{~m}]$, where:
T_{S} - length of the section $\mathrm{T}_{\mathrm{S}}[\mathrm{m}]$
γ - deflection angle of the horizontal curve [rad]
$T_{S}=(250+0,94) \cdot \operatorname{tg} \frac{0,901167}{2}=121,40 \mathrm{~m}$

	$\mathbf{R}[\mathrm{m}]$	$\mathbf{H}[\mathrm{m}]$	$\gamma[\mathrm{rad}]$	$\mathbf{T}_{\mathbf{s}}[\mathrm{m}]$
curve 1	250	0,94	0,901167	$\mathbf{1 2 1 , 4 0}$
curve 2	320	0,73	0,706306	$\mathbf{1 1 8 , 2 2}$
curve 3	380	0,63	0,602422	$\mathbf{1 1 8 , 2 5}$
curve 4	200	0,75	0,851181	$\mathbf{9 1 , 0 0}$

Unia Europejska

j) integer tangent

$T_{0}=X_{s}+T_{s} \quad[\mathrm{~m}]$, where:
$\mathrm{T}_{0}{ }^{-}$- integer tangent [m]
$\mathrm{T}_{0}=37,47+121,40=158,87 \mathrm{~m}$

	$\mathbf{X}_{\mathbf{s}}[\mathrm{m}]$	$\mathbf{T}_{\mathbf{s}}[\mathrm{m}]$	$\mathbf{T}_{\mathbf{0}}[\mathrm{m}]$
curve 1	37,47	1211,40	$\mathbf{1 5 8 , 8 7}$
curve 2	37,48	118,22	$\mathbf{1 5 5 , 7 1}$
curve 3	37,99	118,25	$\mathbf{1 5 6 , 2 4}$
curve 4	29,98	91,00	$\mathbf{1 2 0 , 9 8}$

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

Unia Europejska

k) central angle of the reduced horizontal curve

```
\alpha=\gamma-2\cdot\tau [m], where:
\gamma-deflection angle of the horizontal curve [rad]
\tau- deflection angle of the tangent on the end of the horizontal curve [rad]
\alpha-central angle of the reduced horizontal curve [rad]
\alpha=0,901167-2\cdot0,150000 = 0,601167 rad
```

	$\gamma[\mathrm{rad}]$	$\tau[\mathrm{rad}]$	$\alpha[\mathrm{rad}]$	$\alpha\left[^{\circ}\right]$	
curve 1	0,901167	0,150000	0,601167	$34^{\circ} 26^{\prime} 40^{\prime \prime}$	$\mathbf{3 4 , 4 4 4 3}$
curve 2	0,706306	0,117188	0,471931	$27^{\circ} 02^{\prime} 23^{\prime \prime}$	$\mathbf{2 7 , 0 3 9 7}$
curve 3	0,602422	0,100000	0,402422	$23^{\circ} 03^{\prime} 26^{\prime \prime}$	$\mathbf{2 3 , 0 5 7 1}$
curve 4	0,851181	0,150000	0,551181	$31^{\circ} 34^{\prime} 49^{\prime \prime}$	$\mathbf{3 1 , 5 8 0 3}$

Unia Europejska

I) length of the reduced horizontal curve

$\mathrm{E}=\mathrm{R} \cdot \mathrm{a}$ [m], where:
α - central angle of the reduced horizontal curve [rad]
Ł- length of the reduced horizontal curve [m]
$Ł=250 \cdot 0,601167=150,29 \mathrm{~m}$

	R $[\mathrm{m}]$	$\alpha[\mathrm{rad}]$	$\mathbf{L}[\mathrm{m}]$
curve 1	250	0,601167	$\mathbf{1 5 0 , 2 9}$
curve 2	320	0,471931	$\mathbf{1 5 1 , 0 2}$
curve 3	380	0,402422	$\mathbf{1 5 2 , 9 2}$
curve 4	200	0,551181	$\mathbf{1 1 0 , 2 4}$

Coordinates for staking out the transition curve

Intermediate points for the transition curves in local coordinate systems

$$
x(l)=l-\frac{l^{5}}{40 a^{4}}+\frac{l^{9}}{3456 a^{8}}-(\ldots)[m] \quad y(l)=\frac{l^{3}}{6 a^{2}}-\frac{l^{7}}{336 a^{6}}+\frac{l^{11}}{42240 a^{10}}-(\ldots)[m], \text { where: }
$$

$x(1)$ - local coordinate of the intermediate point of the transition curve [m]
$y(1)$ - local coordinate of the intermediate point of the transition curve [m]
where: $0 \leq 1 \leq \mathrm{L}$

$$
x(l)=50,00-\frac{50,00^{5}}{40 \cdot 136,93^{4}}+(\ldots)=49,98 m \quad y(l)=\frac{50,00^{3}}{6 \cdot 136,93^{2}}-\frac{50,00^{7}}{336 \cdot 136,93^{6}}+(\ldots)=1,11 m
$$

Transformation of the coordinate from the local system to the global system

$$
\left\{\begin{array}{l}
X=x \cdot \cos \alpha-y \cdot \sin \alpha+a \\
Y=x \cdot \sin \alpha+y \cdot \cos \alpha+b
\end{array}\right.
$$

Unia Europejska

Mileage of the horizontal alignment

[^0]Signs:
PA - PPT - BDR - begin of the design road
W-V-vertex point
PŁK - BC - begin of the curve
$K Ł K-E C$ - end of the curve
PKP - BTC - begin of the transition curve
KKP - ETC - end of the transition curve
ŚŁK - CC - center of the curve
PB - KPT - EDR - end of the design road
L - the length of the clothoid
$Ł-L^{\prime}$ - the length of the reducted curve
T_{o} - the length of the integer tangent

$+\mathrm{L}_{3}$	+	76,00		
$\underline{-T_{03}}$		$\begin{array}{r} \hline 1+920,67 \\ 156,24 \\ \hline \end{array}$	$\overline{\mathrm{PKP}_{3}}$	
$+\mathrm{W}_{3} \mathrm{~W}_{4}$	+	$\begin{array}{r} \hline 1+764,43 \\ 943,65 \\ \hline \end{array}$	$\mathrm{W}_{3}{ }^{*}$	
$\underline{-\mathrm{T}_{04}}$	-	$\begin{array}{r} \hline 2+708,08 \\ 120,98 \\ \hline \end{array}$	W_{4}	
$+\mathrm{L}_{4}$	$+$	$\begin{array}{r} \hline 2+587,10 \\ 60,00 \\ \hline \end{array}$	PKP_{4}	
$\underline{+\mathrm{E}_{4} / 2}$	$+$	$\begin{array}{r} 2+647,10 \\ 55,12 \\ \hline \end{array}$	$\mathrm{KKP}_{4}=\mathrm{PEK}_{4}$	$\begin{aligned} \mathrm{W}_{4}-\mathrm{W}_{4} * & =2 \cdot \mathrm{~T}_{\sigma}-2 \cdot \mathrm{~L}-\mathrm{L} \\ 2708,08-2696,36 & =2 \cdot 120,98-2 \cdot 60,000-110,24 \end{aligned}$
+ $\mathrm{E}_{4} / 2$		$\begin{array}{r} \hline 2+702,22 \\ 55,12 \\ \hline \end{array}$	ŚŁK4	$11,72=11,72$
$\underline{+}$	$+$	$\begin{array}{r} 2+757,34 \\ 60,00 \\ \hline \end{array}$	$\mathrm{K} \mathrm{K}_{4}=\mathrm{KKP}_{4}$	
$\underline{-T_{04}}$		$\begin{array}{r} 2+817,34 \\ 120,98 \\ \hline \end{array}$	$\overline{\mathrm{PKP}_{4}}$	
$+\mathrm{W}_{4} \mathrm{~B}$	$+$	$\begin{array}{r} \hline 2+696,36 \\ 285,94 \\ \hline \end{array}$	$\mathrm{W}_{4}{ }^{*}$	
		2+982,30	B	

Verification:
$\mathrm{AW}_{1}-\left(\mathrm{W}_{1}-\mathrm{W}_{1}{ }^{*}\right)+\mathrm{W}_{1} \mathrm{~W}_{2}-\left(\mathrm{W}_{2}-\mathrm{W}_{2}{ }^{*}\right)+\mathrm{W}_{2} \mathrm{~W}_{3}-\left(\mathrm{W}_{3}-\mathrm{W}_{3}{ }^{*}\right)+\mathrm{W}_{3} \mathrm{~W}_{4}-\left(\mathrm{W}_{4}-\mathrm{W}_{4}{ }^{*}\right)+\mathrm{W}_{4} \mathrm{~B}=\mathrm{KT}$
$619,90-(619,90-602,45)+454,56-(1057,01-1046,62)+725,36$
$-(1771,98-1764,43)+943,65-(2708,08-2696,36)+285,94=2982,30$
$2982,30=2982,30$

Fundusze Europejskie

Literature:

http://onlinemanuals.txdot.gov/txdotmanuals/rdw/horizontal alignment.htm
https://engineering.purdue.edu/~ce361/JFRICKER/HW/HC 02fHW6.pdf

Unia Europejska

THANK YOU FOR YOUR ATTENTION

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

Fundusze Europejskie

[^0]: Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

