Fundamentals of Road Construction

Lecturer :

Marcin Bilski, BEng, PhD
Division of Road Engineering Institute of Civil Engineering room 324B (building A2) room K4 (hall A4) marcin.bilski@put.poznan.pl
 bilski.put.poznan.pl

Lecture 4

The subject of the lecture:

Vertical alignment

Unia Europejska

Vertical alignment is the combination of circular vertical curves and tangent (straight) sections of a particular slope designed to achieve this objective. The design of vertical alignment is concerned with gradients, crest and sag curves. A crest curve is a convex vertical curve. A sag curve is a concave vertical curve.

a crest curve
a sag curve

Source: Low Volume Roads Manual, Volume 2: Geometric Design and Road Safety, Roads Authority Malawi, 2020

Unia Europejska

Terrain vertical following-coordinates:

No.	Mileage	Vertical coordinates [m]	Description
1.	0+000,00	647,50	PA, contour line
2.	0+058,20	645,00	contour line
3.	0+100,00	643,00	Hm - hectometer
4.	0+120,74	642,50	contour line
5.	0+173,98	640,00	contour line
...	
17.	0+417,29	635,00	contour line
18.	0+441,13	637,50	contour line
19.	0+500,00	638,95	Hm - hectometer
20.	0+500,89	639,00	PKP_{1}
21.	0+581,53	639,50	$\mathrm{KKP}_{1}=\mathrm{PEK}_{1}$
22.	0+600,00	639,80	Hm - hectometer
23.	0+639,88	639,70	SŁK ${ }_{1}$
24.	0+698,23	638,80	$\mathrm{KKP}_{1}=\mathrm{K} £ \mathrm{~K}_{1}$
\ldots	
90.	2+999,34	617,50	PB, contour line

Signs:
PA - PPT - BDR - begin of the design road
PŁK - BC - begin of the curve
KŁK - EC - end of the curve
PKP - BTC - begin of the transition curve
KKP - ETC - end of the transition curve
ŚtK - CC - center of the curve
PB - KPT - EDR - end of the design road

Longitudinal section of a raod and terrain profile:

red line - a grade line

Geometric elements of the grade line:

Źródło: http://web.mit.edu/16.400/www/auto_sim/Help/SDLEventVC.htm

Unia Europejska

Determination of the parameters of the grade line on sections with a constant slope:

a) ordinate of the points of bend of the grade line

Point	Mileage	Ordinate of breakdown [m a.s.l.]
A	$0+000,00$	646,50
Z1	$0+230,00$	638,00
Z2	$0+639,88$	640,50
Z3	$1+330,00$	624,60
Z4	$2+380,00$	612,45
Z5	$2+718,36$	611,00
B	$2+999,34$	616,50

b) slope of the grade line on sections with a constant slope
$i=\frac{H_{k}-H_{p}}{L} \cdot 100$ [\%], where:
i- slope of the grade line on sections with a constant slope [\%], between points of breakdown of the grade line niwelety),
H_{p} - ordinate of a beginning of section of grade line with constant slope [m]
H_{k} - ordinate of a beginning of section of grade line with constant slope [m]
L - length of section of grade line with constant slope [m]

$$
i=\frac{638,00-646,50}{230,00} \cdot 100=-3,696 \%
$$

c) the angle of bend of the grade line

$$
\alpha=\left|i_{n}-i_{n+1}\right| \text { [\%], where: }
$$

α - the angle of refraction of the grade line [\%]
i_{n} - the slope of the grade line before bend [\%]
$\mathrm{i}_{\mathrm{n}+1}$ - the slope of the grade line after bend [\%]

$$
\alpha=\left|i_{2}-i_{3}\right|=|0,610-(-2,304)|=2,914 \%
$$

e) mean slope of the grade line for the bend
$i_{s r}=\frac{i_{n}+i_{n+1}}{2}$ [\%], where:
$\mathrm{i}_{\text {sr }}$ - mean slope of the grade line for the bend [\%]
i_{n} - slope of the grade line before the bend [\%]
$\mathrm{i}_{\mathrm{n}+1}$ - slope of the grade line after the bend [\%]
$i_{s r}=\frac{i_{2}+i_{3}}{2}=\frac{0,610+(-2,304)}{2}=-0,847 \%$

The list of parameters of the bends of the grade line

Bend number	Mileage	Scheme	i before bend [\%]	i after bend [\%]	α [\%]	$\mathrm{i}_{\text {sr }}$ [\%]
$\begin{aligned} & \mathrm{Z} 1 \\ & \text { sag } \end{aligned}$	0+230,00		-3,696	0,610	4,306	-1,543
$\begin{gathered} \mathrm{Z} 2 \\ \text { crest } \end{gathered}$	0+639,88		0,610	-2,304	2,914	-0,847
$\begin{aligned} & \mathrm{Z3} \\ & \text { sag } \end{aligned}$	1+330,00	$\Theta \quad-$	-2,304	-1,157	1,147	-1,731
$\begin{aligned} & \mathrm{Z4} \\ & \text { sag } \end{aligned}$	$2+380,00$	$\Theta \quad-$	-1,157	-0,429	0,729	-0,793
$\begin{array}{r} \mathrm{Z5} \\ \text { sag } \end{array}$	$2+718,36$		-0,429	1,957	2,386	0,764

short $Z=B$-bend

Unia Europejska

Determination of the distance of the required stopping visibility:

$L_{\mathrm{Z}} \geq L=v \cdot t+\frac{\mathrm{L}=\mathrm{L}_{\mathrm{r}}+\mathrm{L}_{\mathrm{h}}+\mathrm{L}_{\text {bez }}}{2 \cdot g \cdot\left(0,95 \cdot \varphi+f-\left|i_{s r}\right|\right.}+10[\mathrm{~m}]$, where:
L_{Z} - required distance of the stopping visibility [m]
L - length of the vehicle stopping distance [m]
v - speed [m / s]
$v=\left\{\begin{array}{l}v_{p}+10-\text { for road class } Z \text { and roads of lower classes } \\ v_{m}-\text { for road class } G \text { and roads of higher classes }\end{array} \Rightarrow v=v_{P}+10=70 \frac{\mathrm{~km}}{\mathrm{~h}} \Rightarrow v=19,44 \frac{\mathrm{~m}}{\mathrm{~s}}\right.$
t - driver reaction time [s], adopted $t=1 \mathrm{~s}$
g - acceleration due to gravity $\left[\mathrm{m} / \mathrm{s}^{2}\right], \mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2}$
φ - a longitudinal coefficient of adhesion of the tire to the road surface
Coefficient was adopted for the wet asphalt surface: $\varphi=0,35[-]$
f - rolling friction coefficient for asphalt pavement in average condition adopted : $\mathrm{f}=\mathbf{0 , 0 1 8}[-]$
$\mathrm{i}_{\text {sr }}$ - mean slope of the grade line [-]
$L_{\mathrm{Z}}=19,44 \cdot 1+\frac{19,44^{2}}{2 \cdot 9,81 \cdot(0,95 \cdot 0,35+0,018-|0,01543|)}+10=163,47 \mathrm{~m}$

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

Unia Europejska

List of the distance of the required stopping visibility L_{Z}

Bend number	Mileage	Scheme	$\mathrm{i}_{\text {sr }}[-]$	$\mathrm{L}[\mathrm{~m}]$ by formula	$\begin{gathered} \mathrm{L}_{\text {Zmin }}[\mathrm{m}] \\ \text { by JoL16 } \end{gathered}$	adopted $\mathrm{L}_{\mathrm{Z}}[\mathrm{m}]$
$\begin{aligned} & \text { Z1 } \\ & \text { sag } \end{aligned}$	0+230,00		-0,01543	86,96	90,00	90,00
$\begin{gathered} \text { Z2 } \\ \text { crest } \end{gathered}$	0+639,88		-0,00847	85,79	90,00	90,00
$\begin{aligned} & \mathrm{Z} 3 \\ & \text { sag } \end{aligned}$	1+330,00	Θ	-0,01731	87,28	90,00	90,00
$\begin{gathered} \mathrm{Z4} \\ \text { sag } \end{gathered}$	$2+380,00$		-0,00793	85,70	90,00	90,00
$\begin{aligned} & \text { Z5 } \\ & \text { sag } \end{aligned}$	$2+718,36$		0,00764	85,65	90,00	90,00

Unia Europejska

Determination of the radius of vertical curves:

a) minimum radius due to the visibility for the crest curve (curve no 2)
$>$ requirement 1

$$
\begin{gathered}
L_{Z} \leq \frac{a}{\alpha} \rightarrow \mathrm{R}_{\min } \text { does not specify } \\
\frac{a}{\alpha}=\frac{1,00}{0,02914}=34,32 \mathrm{~m} \\
\mathrm{~L}_{\mathrm{Z}}=90,00 \mathrm{~m} \geq \frac{a}{\alpha}=34,32 \mathrm{~m}, \text { must be calculated } \mathrm{R}_{\min }
\end{gathered}
$$

$>$ requirement 2

$$
\begin{aligned}
\frac{a}{\alpha}<L_{Z} \leq \frac{2 a}{\alpha} \quad \rightarrow \quad R_{\min } & =\frac{2}{\alpha} \cdot\left(L_{Z}-\frac{a}{\alpha}\right)[\mathrm{m}] \\
\frac{a}{\alpha} & =34,32 \mathrm{~m} \\
\mathrm{~L}_{\mathrm{Z}}=90,00 \mathrm{~m} & \frac{2 a}{\alpha}
\end{aligned}=\frac{2 \cdot 1,00}{0,02914}=68,64 \mathrm{~m} .
$$

> requirement 3

$$
L_{\mathrm{Z}}>\frac{2 a}{\alpha} \rightarrow R_{\min }=\frac{L_{Z}^{2}}{2 a}[m], \text { where: }
$$

$\mathrm{R}_{\text {min }}$ - minimum radius of vertical curve [m]
L_{Z} - required distance of the stopping visibility [m] a - localization of the observation point $[\mathrm{m}] \mathrm{a}=\mathbf{1 , 0 0 m}$,
α - the angle of bend of the grade line [rad]

$$
\begin{gathered}
\mathrm{L}_{\mathrm{Z}}=90,00 \mathrm{~m} \geq \frac{2 a}{\alpha}=68,64 \mathrm{~m} \\
R_{\min }=\frac{90,00^{2}}{2 \cdot 1,00}=4050,00 \mathrm{~m}
\end{gathered}
$$

Bend no.	Milage	$\mathrm{L}_{Z}[\mathrm{~m}]$	$\frac{a}{\alpha}$	$\frac{2 a}{\alpha}$	Formula	$\mathrm{R}_{\min }$ $[\mathrm{m}]$
Z 2 crest	$0+639,88$	90,00	34,32	68,64	$R_{\min }=\frac{L_{Z}^{2}}{2 a}[\mathrm{~m}]$	4050,00

b) minimum radius due to the visibility for the sag curve (curve no 1, 3, 4, 5)
requirement 1

$$
\begin{gathered}
\alpha \leq 2 \psi \rightarrow \mathrm{R}_{\text {min }} \text { does not specify } \\
\alpha=0,04306 \mathrm{rad} \geq 2 \psi=0,0348 \text { rad, must be calculated } \mathrm{R}_{\text {min }}
\end{gathered}
$$

> requirement 2

$$
\begin{array}{ll}
\frac{h}{\alpha-\psi}<L_{Z} \leq \frac{2 h}{\alpha-2 \psi} \rightarrow \quad R_{\min }=\frac{2}{\alpha} \cdot\left(L_{Z}-\frac{h+L_{Z} \cdot \psi}{\alpha}\right)[m] \\
\frac{h}{\alpha-\psi}=29,23 & \frac{2 h}{\alpha-2 \psi}=\frac{2 \cdot 0,75}{0,04306-2 \cdot 0,0174}=181,69
\end{array}
$$

$L_{Z}=90,00 \mathrm{~m}$ is within the specified range

$$
R_{\min }=\frac{2}{\alpha} \cdot\left(L_{\mathrm{Z}}-\frac{h+L_{\mathrm{Z}} \cdot \psi}{\alpha}\right)[m], \text { where: }
$$

$\mathrm{R}_{\text {min }}$ - radius of the vertical curve [m]
α - the angle of bend of the grade line [\%]
L_{Z} - required distance of the stopping visibility [m]
ψ - the elevation angle of the useful light beam from the headlight [rad] , adopted: $\psi=\mathbf{0 , 0 1 7 4} \mathbf{r a d}$
h - height of the optical axis of the headlight above the road surface [m], adopted: $\mathbf{h}=\mathbf{0 , 7 5} \mathbf{~ m}$

$$
R_{\min }=\frac{2}{0,04306} \cdot\left(90,00-\frac{0,75+90,00 \cdot 0,0174}{0,04306}\right)=1681,97 \mathrm{~m}
$$

$>$ requirement 3

$$
L_{z}>\frac{2 h}{\alpha-2 \psi} \quad \rightarrow \quad R_{\min }=\frac{L_{Z}^{2}}{2 \cdot\left(h+L_{z} \cdot \psi\right)}[m] \quad, \text { where: }
$$

$\mathrm{R}_{\text {min }}$ - radius of the vertical curve [m]
α - the angle of bend of the grade line [\%]
$\mathrm{L}_{\mathrm{Z}}-$ required distance of the stopping visibility [m]
ψ - the elevation angle of the useful light beam from the headlight [rad], adopted: $\psi=\mathbf{0 , 0 1 7 4} \mathbf{r a d}$
h - height of the optical axis of the headlight above the road surface [m], adopted: $\mathbf{h}=\mathbf{0 , 7 5} \mathbf{~ m}$

Bend no.	Mileage	$\alpha[\mathrm{rad}]$	$2 \psi[\mathrm{rad}]$	Calculation $\mathrm{R}_{\min }$
Z1 sag	$0+230,00$	0,04306	0,0348	must be calculated
Z3 sag	$1+330,00$	0,01147	0,0348	does not specify
Z4 sag	$2+380,00$	0,00729	0,0348	does not specify
Z5 sag	$2+718,36$	0,02386	0,0348	does not specify

Bend number	Mileage	L_{Z} $[\mathrm{m}]$	$\alpha[\mathrm{rad}]$	$\frac{2 h}{\alpha-2 \psi}$	Formula	$\mathrm{R}_{\min }[\mathrm{m}]$
Z 1 sag	$0+230,00$	90,00	0,04306	181,69	$\left.R_{\min }=\frac{2}{\alpha} \cdot\left(L_{z}-\frac{h+L_{z} \cdot \psi}{\alpha}\right) \mathrm{m}\right]$	1681,97

c) minimum radius due to the dynamics

$$
\mathrm{R}_{\min }=0,154 \cdot \mathrm{v}^{2}[\mathrm{~m}], \text { where: }
$$

$\mathrm{R}_{\text {min }}$ - minimum radius of the vertical curve [m]
v - speed [km/h]
$v=\left\{\begin{array}{l}v_{p}-\text { for road class } Z \text { and roads of lower classes } \\ v_{m}-\text { for road class } G \text { and roads of higher classes }\end{array} \quad \Rightarrow v=v_{P}=60 \frac{\mathrm{~km}}{\mathrm{~h}}\right.$

$$
\mathrm{R}_{\min }=0,154 \cdot 60^{2}=554,40 \mathrm{~m}
$$

d) minimum radius due to the aesthetics

$$
R_{\min }=\frac{100 \cdot v}{\alpha}[\mathrm{~m}], \text { where: }
$$

$\mathrm{R}_{\text {min }}$ - minimum radius of the vertical curve [m]
v - speed $[\mathrm{km} / \mathrm{h}]$
$v=\left\{\begin{array}{l}v_{p}-\text { for road class } Z \text { and roads of lower classes } \\ v_{m}-\text { for road class } G \text { and roads of higher classes }\end{array} \quad \Rightarrow v=v_{P}=60 \frac{\mathrm{~km}}{\mathrm{~h}}\right.$
α - the angle of bend of the grade line [\%]

$$
R_{\min }=\frac{100 \cdot 60}{4,306}=1393,54 \mathrm{~m}
$$

Bend number	Mileage	Scheme	$\alpha[\%]$	$R_{\min }[\mathrm{m}]$
Z1 sag	$0+230,00$	-	4,306	1393,54
Z2 crest	$0+639,88$	+	-	2,914
Z3 sag	$1+330,00$	-	-	1,147
Z4 sag	$2+380,00$	-	-	0,729
Z5 sag	$2+718,36$	-	+	$2,381,93$

e) minimum radius due to the JoL16

For design speed $\quad \mathrm{v}_{\mathrm{p}}=60 \mathrm{~km} / \mathrm{h}$:
> the smallest radius of the crest curve on a road with one carriageway $\mathbf{R}_{\min }=\mathbf{2 0 0 0} \mathrm{m}$
> the smallest radius of the sag curve $\mathrm{R}_{\text {min }}=1500 \mathrm{~m}$
f) the adoption of values of the vertical curves

The list of calculations of the radiuses of the vertical curves

Bend number	Mileage	$\mathrm{R}_{\min }[\mathrm{m}]$ visibility	$\mathrm{R}_{\min }[\mathrm{m}]$ dynamics	$\mathrm{R}_{\min }[\mathrm{m}]$ aesthetics	$\mathrm{R}_{\min }[\mathrm{m}]$ JoL16	Adopted $\mathbf{R}[\mathrm{m}]$
Z1 sag	$0+230,00$	1681,97	554,40	1393,54	1500	$\mathbf{3 5 0 0}$
Z2 crest	$0+639,88$	4050,00	554,40	2059,11	2000	$\mathbf{4 0 0 0}^{*}$
Z3 sag	$1+330,00$	-	554,40	5231,93	1500	$\mathbf{7 0 0 0}$
Z4 sag	$2+380,00$	-	554,40	8234,91	1500	$\mathbf{1 5 0 0 0}$
Z5 sag	$2+718,36$	-	554,40	2514,70	1500	$\mathbf{3 5 0 0}$

* - due to the lack of ensuring the required visibility, it is necessary to apply the appropriate authority for a derogation from the Building Law —

Values of the geometric parameters of the grade line:

a) tangent of the vertical curve
$T=R \cdot \operatorname{tg} \frac{\alpha}{2}[\mathrm{~m}]$, where:

T - tangent of the vertical curve [m]
R - radius of the vertical curve [m]
$\alpha-$ angle of bend of the grade line [\%]

$$
T=3500 \cdot \operatorname{tg} \frac{0,04306}{2}=75,36 \mathrm{~m}
$$

b) external of the vertical curve
$B=\frac{T^{2}}{2 R}[\mathrm{~m}]$, where:
B - external of the vertical curve [m]
T - tangent of the vertical curve [m]
R - radius of the vertical curve [m]
$B=\frac{75,36^{2}}{2 \cdot 3500}=0,81 \mathrm{~m}$
External must be greater than 0.05 m (technological condition)

c) length of the vertical curve

$\lfloor=2 \cdot T$ [m], where
Ł - length of the vertical curve [m]
T - tangent of the vertical curve [m]
$\ell=2 \cdot 75,36=150,72 m$

List of characteristic values of the vertical curves

Curve no.	Mileage	$\mathrm{R}[\mathrm{m}]$	$\alpha[\mathrm{rad}]$	$\mathrm{T}[\mathrm{m}]$	$\mathrm{B}[\mathrm{m}]$	$\mathbf{L}[\mathrm{m}]$
Curve 1 sag	$0+230,00$	3500	0,04306	$\mathbf{7 5 , 3 6}$	$\mathbf{0 , 8 1}$	$\mathbf{1 5 0 , 7 2}$
Curve 2 crest	$0+639,88$	4000	0,02914	$\mathbf{5 8 , 2 8}$	$\mathbf{0 , 4 2}$	$\mathbf{1 1 6 , 5 6}$
Curve 3 sag	$1+330,00$	7000	0,01147	$\mathbf{4 0 , 1 4}$	$\mathbf{0 , 1 2}$	$\mathbf{8 0 , 2 8}$
Curve 4 sag	$2+380,00$	15000	0,00729	$\mathbf{5 4 , 6 5}$	$\mathbf{0 , 1 0}$	$\mathbf{1 0 9 , 2 9}$
Curve 5 sag	$2+718,36$	3500	0,02386	$\mathbf{4 1 , 7 6}$	$\mathbf{0 , 2 5}$	$\mathbf{8 3 , 5 1}$

Curve no.	Mileage	$\mathrm{T}[\mathrm{m}]$	Mileage beginning of curve	Mileage end of curve
Curve 1 sag	$0+230,00$	75,36	$0+154,64$	$0+305,36$
Curve 2 crest	$0+639,88$	58,28	$0+581,60$	$0+698,16$
Curve 3 sag	$1+330,00$	40,14	$1+289,86$	$1+370,14$
Curve 4 sag	$2+380,00$	54,65	$2+325,35$	$2+434,65$
Curve 5 sag	$2+718,36$	41,76	$2+676,60$	$2+760,12$

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

Intermediate coordinates of the vertical curves:

a) coordinates of the grade line on the beginning and the end of vertical curve

$$
H_{P L}=H_{Z}-i_{n} \cdot T \text { [m] }
$$

$$
H_{K I}=H_{Z}+i_{n+1} \cdot T \text { [m], where: }
$$

H_{PL} - coordinates of the grade line on the beginning of vertical curve [m]

$$
\mathrm{H}_{\mathrm{Pt}}=\mathrm{H}_{\mathrm{BC}} ; \mathrm{H}_{\mathrm{Kt}}=\mathrm{H}_{\mathrm{EC}}
$$

$\mathrm{H}_{\mathrm{K} 亡}$ - coordinates of the grade line on the end of vertical curve [m]
i_{n} - slope of the grade line before the bend [\%]
$\mathrm{i}_{\mathrm{n}+1}$ - slope of the grade line after the bend [\%]
T - tangent of the vertical curve [m]
$H_{P L}=638,00-(-0,03696) \cdot 75,36=640,79 \mathrm{~m}$
$H_{K L}=638,00+0,00610 \cdot 75,36=638,46 \mathrm{~m}$

Curve no.	$\mathrm{H}_{\mathrm{Z}}[\mathrm{m}]$	i before bend $[-]$	i after bend $[-]$	$\mathrm{T}[\mathrm{m}]$	$\mathbf{H}_{\mathbf{P Ł}}[\mathrm{m}]$	$\mathbf{H}_{\mathrm{KŁ}}[\mathrm{~m}]$
Curve 1 sag	638,00	$-0,03696$	0,00610	75,36	$\mathbf{6 4 0 , 7 9}$	$\mathbf{6 3 8 , 4 6}$
Curve 2 crest	640,50	0,00610	$-0,02304$	58,28	$\mathbf{6 4 0 , 1 4}$	$\mathbf{6 3 9 , 1 6}$
Curve 3 sag	624,60	$-0,02304$	$-0,01157$	40,14	$\mathbf{6 2 5 , 5 2}$	$\mathbf{6 2 4 , 1 4}$
Curve 4 sag	612,45	$-0,01157$	$-0,00429$	54,65	$\mathbf{6 1 3 , 0 8}$	$\mathbf{6 1 2 , 2 2}$
Curve 5 sag	611,00	$-0,00429$	0,01957	41,76	$\mathbf{6 1 1 , 1 8}$	$\mathbf{6 1 1 , 8 2}$

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

b) intermediate coordinates of the vertical curves

$$
\begin{gathered}
y_{i}= \pm \frac{x_{i}^{2}}{2 \cdot R}[\mathrm{~m}] \\
\mathrm{H}_{\mathrm{i}}=\mathrm{H}_{\mathrm{mi}}+\mathrm{y}_{\mathrm{i}}[\mathrm{~m}]
\end{gathered}
$$

H_{i} - ordinate of the grade line after drawing the vertical curve [m]
H_{m} - ordinate of the grade line before drawing the vertical curve [m]
X_{i} - distance from the beginning of the vertical curve [m]
y_{i} - ordinate of the intermediate point on the vertical curve [m]
R - radius of the vertical curve [m]

$$
\begin{gathered}
\mathrm{y}_{\mathrm{i}}=-\frac{50^{2}}{2 \cdot 4000}=-0,31 \mathrm{~m} \\
\mathrm{H}_{\mathrm{i}}=640,45+(-0,31)=640,14 \mathrm{~m}
\end{gathered}
$$

For a crest curve we substitute " + " and for a sag curve "-".

Point	Mileage	X	y	H_{m}	H
BC	$0+154,64$	0	0,00	640,79	640,79
	$0+164,64$	10	0,01	640,42	640,43
	$0+174,64$	20	0,06	640,05	640,10
	$0+184,64$	30	0,13	639,68	639,80
	$0+194,64$	40	0,23	639,31	639,54
	$0+204,64$	50	0,36	638,94	639,29
	$0+214,64$	60	0,51	638,57	639,08
	$0+224,64$	70	0,70	638,20	638,90
	$0+230,00$	75,36	0,81	638,00	638,81
	$0+235,36$	70	0,70	638,03	638,73
	$0+245,36$	60	0,51	638,09	638,61
	$0+255,36$	50	0,36	638,15	638,51
	$0+265,36$	40	0,23	638,22	638,44
	$0+275,36$	30	0,13	638,28	638,41
	$0+285,36$	20	0,06	638,34	638,39
EC	$0+295,36$	10	0,01	638,40	638,41

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

Source: https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto,q_auto,f_auto/gigs2/119097999

THANK YOU FOR YOUR ATTENTION

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

Fundusze Europejskie

