Fundamentals of Road Construction

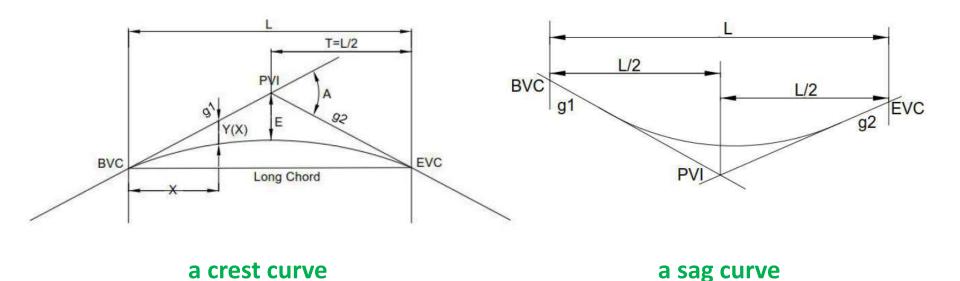
Lecturer: Marcin Bilski, BEng, PhD

Division of Road Engineering Institute of Civil Engineering room 324B (building A2) room K4 (hall A4) marcin.bilski@put.poznan.pl bilski.put.poznan.pl

Lecture 4

The subject of the lecture:

Vertical alignment



Vertical alignment is the combination of circular vertical curves and tangent (straight) sections of a particular slope designed to achieve this objective. The design of vertical alignment is concerned with gradients, crest and sag curves. A crest curve is a convex vertical curve. A sag curve is a concave vertical curve.

Source: Low Volume Roads Manual, Volume 2: Geometric Design and Road Safety, Roads Authority Malawi, 2020

Terrain vertical following-coordinates:

No.	Mileage	Vertical coordinates [m]	Description
1.	0+000,00	647,50	PA , contour line
2.	0+058,20	645,00	contour line
3.	0+100,00	643,00	Hm - hectometer
4.	0+120,74	642,50	contour line
5.	0+173,98	640,00	contour line
17.	0+417,29	635,00	contour line
18.	0+441,13	637,50	contour line
19.	0+500,00	638,95	Hm - hectometer
20.	0+500,89	639,00	PKP ₁
21.	0+581,53	639,50	$KKP_1 = PLK_1$
22.	0+600,00	639,80	Hm - hectometer
23.	0+639,88	639,70	ŠŁK ₁
24.	0+698,23	638,80	$KKP_1 = KŁK_1$

90.	2+999,34	617,50	PB , contour line

Signs:

PA – PPT – BDR – begin of the design road

PŁK – BC – begin of the curve

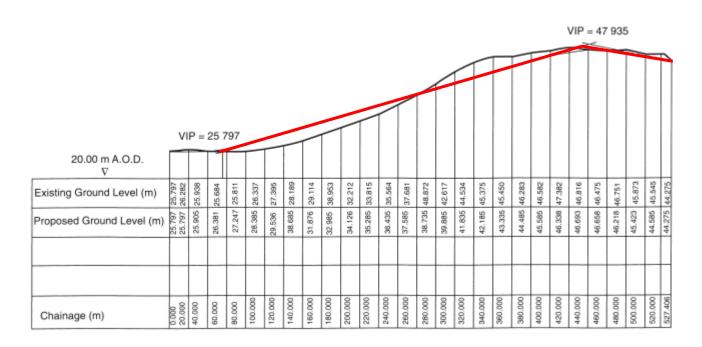
KŁK - EC - end of the curve

PKP - BTC - begin of the transition curve

KKP - ETC - end of the transition curve

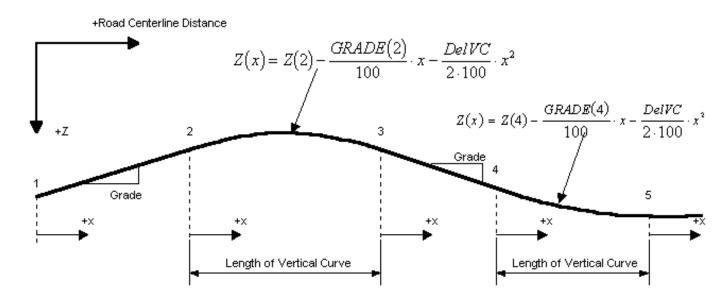
ŚŁK – CC – center of the curve

PB - KPT - EDR - end of the design road



Longitudinal section of a raod and terrain profile:

red line – a grade line



Geometric elements of the grade line:

Źródło: http://web.mit.edu/16.400/www/auto sim/Help/SDLEventVC.htm

Determination of the parameters of the grade line on sections with a constant slope:

a) ordinate of the points of bend of the grade line

		•
Point	Mileage	Ordinate of breakdown [m a.s.l.]
A	0+000,00	646,50
Z1	0+230,00	638,00
Z2	0+639,88	640,50
Z3	1+330,00	624,60
Z4	2+380,00	612,45
Z5	2+718,36	611,00
В	2+999,34	616,50

b) slope of the grade line on sections with a constant slope

$$i = \frac{H_k - H_p}{L} \cdot 100$$
 [%], where

 i - slope of the grade line on sections with a constant slope [%], between points of breakdown of the grade line niwelety),

 $H_{\text{p}}-$ ordinate of a beginning of section of grade line with constant slope [m]

 H_k - ordinate of a beginning of section of grade line with constant slope [m]

L – length of section of grade line with constant slope [m]

$$i = \frac{638,00 - 646,50}{230,00} \cdot 100 = -3,696\%$$

c) the angle of bend of the grade line

$$\alpha = |i_n - i_{n+1}|$$
 [%], where:

 $\alpha-$ the angle of refraction of the grade line [%]

 i_n – the slope of the grade line before bend [%]

 i_{n+1} – the slope of the grade line after bend [%]

$$\alpha = |i_2 - i_3| = |0,610 - (-2,304)| = 2,914\%$$

e) mean slope of the grade line for the bend

$$i_{\dot{s}r} = \frac{i_n + i_{n+1}}{2}$$
 [%], where:

 $i_{\acute{s}r}-$ mean slope of the grade line for the bend [%]

 i_n – slope of the grade line before the bend [%]

 $i_{n+1}-\,$ slope of the grade line after the bend [%]

$$i_{sr} = \frac{i_2 + i_3}{2} = \frac{0.610 + (-2.304)}{2} = -0.847\%$$

The list of parameters of the bends of the grade line

Bend number	Mileage	Scheme	i before bend [%]	i after bend [%]	α [%]	i _{śr} [%]
Z1 sag	0+230,00	•	-3,696	0,610	4,306	-1,543
Z2 crest	0+639,88	+	0,610	-2,304	2,914	-0,847
Z3 sag	1+330,00	<u>0</u>	-2,304	-1,157	1,147	-1,731
Z4 sag	2+380,00	<u>O</u>	-1,157	-0,429	0,729	-0,793
Z5 sag	2+718,36	<u>+</u>	-0,429	1,957	2,386	0,764

short Z = B - bend

Determination of the distance of the required stopping visibility:

$$L = L_r + L_h + L_{bez}$$

$$L_Z \ge L = v \cdot t + \frac{v^2}{2 \cdot g \cdot (0.95 \cdot \varphi + f - \left|i_{\acute{z}r}\right|)} + 10 \text{ [m]}, \text{ where:}$$

 $L_{Z}-\,$ required distance of the stopping visibility [m]

L – length of the vehicle stopping distance [m]

V - speed [m/s]

$$v = \begin{cases} v_p + 10 - \text{ for road class Z and roads of lower classes} \\ v_m - \text{ for road class G and roads of higher classes} \end{cases} \Rightarrow v = v_p + 10 = 70 \frac{km}{h} \Rightarrow v = 19,44 \frac{m}{s}$$

t - driver reaction time [s], adopted <math>t = 1 s

g – acceleration due to gravity [m/s²], g = 9,81 m/s²

 ϕ – a longitudinal coefficient of adhesion of the tire to the road surface

Coefficient was adopted for the wet asphalt surface: $\varphi = 0.35$ [-]

f- rolling friction coefficient for asphalt pavement in average condition adopted : $f=0.018\ [\text{-}\]$

 $i_{\hat{s}r}-$ mean slope of the grade line [-]

$$L_{\rm Z} = 19,44 \cdot 1 + \frac{19,44^2}{2 \cdot 9,81 \cdot (0,95 \cdot 0,35 + 0,018 - |0,01543|)} + 10 = 163,47m$$

Uczelnia zintegrowana na przyszłość POWR.03.05.00-00-Z041/17

List of the distance of the required stopping visibility $\,L_{Z}\,$

Bend number	Mileage	Scheme	i _{śr} [–]	L [m] by formula	L _{Zmin} [m] by JoL16	adopted L _Z [m]
Z1 sag	0+230,00	- + -	-0,01543	86,96	90,00	90,00
Z2 crest	0+639,88	•	-0,00847	85,79	90,00	90,00
Z3 sag	1+330,00	<u> </u>	-0,01731	87,28	90,00	90,00
Z4 sag	2+380,00	<u> </u>	-0,00793	85,70	90,00	90,00
Z5 sag	2+718,36		0,00764	85,65	90,00	90,00

Determination of the radius of vertical curves:

a) minimum radius due to the visibility for the crest curve (curve no 2)

> requirement 1

$$L_{\rm Z} \le \frac{a}{\alpha} \rightarrow {\rm R}_{\rm min}$$
 does not specify
$$\frac{a}{\alpha} = \frac{1,00}{0.02914} = 34,32 \, m$$

$$L_Z = 90,00 \text{ m} \ge \frac{a}{\alpha} = 34,32 \text{ m}, \text{ must be calculated } R_{min}$$

requirement 2

$$\frac{a}{\alpha} < L_z \le \frac{2a}{\alpha} \longrightarrow R_{\min} = \frac{2}{\alpha} \cdot \left(L_z - \frac{a}{\alpha} \right) [m]$$

$$\frac{a}{\alpha} = 34,32 m \qquad \frac{2a}{\alpha} = \frac{2 \cdot 1,00}{0.02914} = 68,64 m$$

 $L_Z = 90,00 \text{ m}$ is not within the specified range

requirement 3

$$L_{\rm Z} > \frac{2a}{\alpha} \rightarrow R_{\rm min} = \frac{L_{\rm Z}^2}{2a} [m]$$
, where:

R_{min} - minimum radius of vertical curve [m]

L_Z - required distance of the stopping visibility [m]

a – localization of the observation point [m] a = 1.00m,

 α - the angle of bend of the grade line [rad]

$$L_Z = 90,00 \text{ m} \ge \frac{2a}{\alpha} = 68,64 \text{ m}$$

$$R_{\min} = \frac{90,00^2}{2 \cdot 1,00} = 4050,00 \text{ m}$$

Bend no.	Milage	L _Z [m]	$\frac{a}{\alpha}$	$\frac{2a}{\alpha}$	Formula	R _{min} [m]
Z2 crest	0+639,88	90,00	34,32	68,64	$R_{\min} = \frac{L_{\rm Z}^2}{2a} [m]$	4050,00

b) minimum radius due to the visibility for the sag curve (curve no 1, 3, 4, 5)

requirement 1

$$\alpha \leq 2\psi \quad \rightarrow \quad R_{min} \ \ \text{does not specify} \\ \alpha = 0,04306 \ rad \geq 2\psi = 0,0348 \ rad, \ must \ \text{be calculated} \ R_{min}$$

requirement 2

$$\frac{h}{\alpha - \psi} < L_z \le \frac{2h}{\alpha - 2\psi} \rightarrow R_{\min} = \frac{2}{\alpha} \cdot \left(L_z - \frac{h + L_z \cdot \psi}{\alpha}\right) [m]$$

$$\frac{h}{\alpha - \psi} = 29,23 \qquad \frac{2h}{\alpha - 2\psi} = \frac{2 \cdot 0,75}{0,04306 - 2 \cdot 0,0174} = 181,69$$

 $L_Z = 90,00 \text{ m}$ is within the specified range

$$R_{\min} = \frac{2}{\alpha} \cdot \left(L_{Z} - \frac{h + L_{Z} \cdot \psi}{\alpha} \right) [m]$$
, where:

R_{min} - radius of the vertical curve [m]

 α – the angle of bend of the grade line [%]

L_Z - required distance of the stopping visibility [m]

 ψ – the elevation angle of the useful light beam from the headlight [rad] , adopted: ψ = 0,0174 rad

h – height of the optical axis of the headlight above the road surface [m], adopted: h = 0.75 m

$$R_{\min} = \frac{2}{0.04306} \cdot \left(90,00 - \frac{0.75 + 90,00 \cdot 0.0174}{0.04306}\right) = 1681,97m$$

requirement 3

$$L_{\rm Z} > \frac{2h}{\alpha - 2\psi}$$
 \rightarrow $R_{\rm min} = \frac{L_{\rm Z}^2}{2 \cdot (h + L_{\rm Z} \cdot \psi)} [m]$, where:

R_{min} – radius of the vertical curve [m]

 α – the angle of bend of the grade line [%]

L_Z – required distance of the stopping visibility [m]

 ψ – the elevation angle of the useful light beam from the headlight [rad], adopted: ψ = 0,0174 rad

h – height of the optical axis of the headlight above the road surface [m], adopted: h = 0.75 m

Bend no.	Mileage	α [rad]	2ψ [rad]	Calculation R _{min}
Z1 sag	0+230,00	0,04306	0,0348	must be calculated
Z3 sag	1+330,00	0,01147	0,0348	does not specify
Z4 sag	2+380,00	0,00729	0,0348	does not specify
Z5 sag	2+718,36	0,02386	0,0348	does not specify

Bend number	Mileage	L _Z [m]	α [rad]	$\frac{2h}{\alpha-2\psi}$	Formula	R _{min} [m]
Z1 sag	0+230,00	90,00	0,04306	181,69	$R_{\min} = \frac{2}{\alpha} \cdot \left(L_{Z} - \frac{h + L_{Z} \cdot \psi}{\alpha} \right) [m]$	1681,97

c) minimum radius due to the dynamics

$$R_{min} = 0.154 \cdot v^2$$
 [m], where:

 R_{min} - minimum radius of the vertical curve [m] v - speed [km/h]

$$v = \begin{cases} v_p - \text{for road class Z and roads of lower classes} \\ v_m - \text{for road class G and roads of higher classes} \end{cases}$$

$$\Rightarrow v = v_p = 60 \frac{km}{h}$$

$$R_{min} = 0.154 \cdot 60^2 = 554.40 \text{ m}$$

d) minimum radius due to the aesthetics

$$R_{\min} = \frac{100 \cdot v}{\alpha}$$
 [m], where:

 R_{min} – minimum radius of the vertical curve [m] v – speed [km/h]

$$v = \begin{cases} v_p - \text{ for road class Z and roads of lower classes} \\ v_m - \text{ for road class G and roads of higher classes} \end{cases}$$

$$\Rightarrow v = v_p = 60 \frac{km}{h}$$

 α – the angle of bend of the grade line [%]

$$R_{\min} = \frac{100 \cdot 60}{4306} = 1393,54m$$

Bend number	Mileage	Scheme	α [%]	R _{min} [m]
Z1 sag	0+230,00		4,306	1393,54
Z2 crest	0+639,88	₱ ∕•	2,914	2059,11
Z3 sag	1+330,00	<u>0</u>	1,147	5231,93
Z4 sag	2+380,00	<u>0</u>	0,729	8234,91
Z5 sag	2+718,36		2,386	2514,70

e) minimum radius due to the JoL16

For design speed $v_p = 60 \text{ km/h}$:

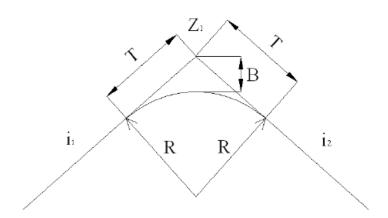
- \succ the smallest radius of the crest curve on a road with one carriageway $R_{min} = 2000 \text{ m}$
- the smallest radius of the sag curve R_{min} = 1500 m

f) the adoption of values of the vertical curves

The list of calculations of the radiuses of the vertical curves

Bend number	Mileage	R _{min} [m] visibility	R _{min} [m] dynamics	R _{min} [m] aesthetics	R _{min} [m] JoL16	Adopted R [m]
Z1 sag	0+230,00	1681,97	554,40	1393,54	1500	3500
Z2 crest	0+639,88	4050,00	554,40	2059,11	2000	4000*
Z3 sag	1+330,00	-	554,40	5231,93	1500	7000
Z4 sag	2+380,00	_	554,40	8234,91	1500	15000
Z5 sag	2+718,36	_	554,40	2514,70	1500	3500

^{* -} due to the lack of ensuring the required visibility, it is necessary to apply the appropriate authority for a derogation from the Building Law



Values of the geometric parameters of the grade line:

a) tangent of the vertical curve

$$T = R \cdot tg \frac{\alpha}{2}$$
 [m], where

T - tangent of the vertical curve [m]

R- radius of the vertical curve [m]

 α – angle of bend of the grade line [%]

$$T = 3500 \cdot tg \frac{0,04306}{2} = 75,36m$$

b) external of the vertical curve

$$B = \frac{T^2}{2R}$$
 [m], where

B - external of the vertical curve [m]

T- tangent of the vertical curve [m]

R- radius of the vertical curve [m]

$$B = \frac{75,36^2}{2 \cdot 3500} = 0,81m$$

External must be greater than 0.05 m (technological condition)

c) length of the vertical curve

$$L = 2 \cdot T$$
 [m], where

Ł – length of the vertical curve [m]

T - tangent of the vertical curve [m]

$$L = 2.75,36 = 150,72m$$

List of characteristic values of the vertical curves

Curve no.	Mileage	R [m]	α [rad]	T [m]	B [m]	Ł [m]
Curve 1 sag	0+230,00	3500	0,04306	75,36	0,81	150,72
Curve 2 crest	0+639,88	4000	0,02914	58,28	0,42	116,56
Curve 3 sag	1+330,00	7000	0,01147	40,14	0,12	80,28
Curve 4 sag	2+380,00	15000	0,00729	54,65	0,10	109,29
Curve 5 sag	2+718,36	3500	0,02386	41,76	0,25	83,51

Curve no.	Mileage	T [m]	Mileage beginning of curve	Mileage end of curve
Curve 1 sag	0+230,00	75,36	0+154,64	0+305,36
Curve 2 crest	0+639,88	58,28	0+581,60	0+698,16
Curve 3 sag	1+330,00	40,14	1+289,86	1+370,14
Curve 4 sag	2+380,00	54,65	2+325,35	2+434,65
Curve 5 sag	2+718,36	41,76	2+676,60	2+760,12

Intermediate coordinates of the vertical curves:

a) coordinates of the grade line on the beginning and the end of vertical curve

$$H_{PL} = H_Z - i_n \cdot T \quad [m]$$

$$H_{KL} = H_Z + i_{n+1} \cdot T$$
 [m], where:

 $H_{PL}-\,$ coordinates of the grade line on the beginning of vertical curve [m]

HPL = HBC : HKL = HEC

 $H_{K\!L}-$ coordinates of the grade line on the end of vertical curve [m]

 i_n – slope of the grade line before the bend [%]

 i_{n+1} – slope of the grade line after the bend [%]

T – tangent of the vertical curve [m]

$$H_{PL} = 638,00 - (-0,03696) \cdot 75,36 = 640,79m$$

$$H_{KF} = 638,00 + 0,00610 \cdot 75,36 = 638,46m$$

Curve no.	H _Z [m]	i before bend [-]	i after bend [-]	T [m]	H _{PŁ} [m]	H _{KŁ} [m]
Curve 1 sag	638,00	-0,03696	0,00610	75,36	640,79	638,46
Curve 2 crest	640,50	0,00610	-0,02304	58,28	640,14	639,16
Curve 3 sag	624,60	-0,02304	-0,01157	40,14	625,52	624,14
Curve 4 sag	612,45	-0,01157	-0,00429	54,65	613,08	612,22
Curve 5 sag	611,00	-0,00429	0,01957	41,76	611,18	611,82

b) intermediate coordinates of the vertical curves

$$y_i = \pm \frac{x_i^2}{2 \cdot R} [m]$$

$$H_i = H_{mi} + y_i [m]$$

 H_i- ordinate of the grade line after drawing the vertical curve [m]

 $H_{\mbox{\scriptsize m}}-$ ordinate of the grade line before drawing the vertical curve [m]

X_i - distance from the beginning of the vertical curve [m]

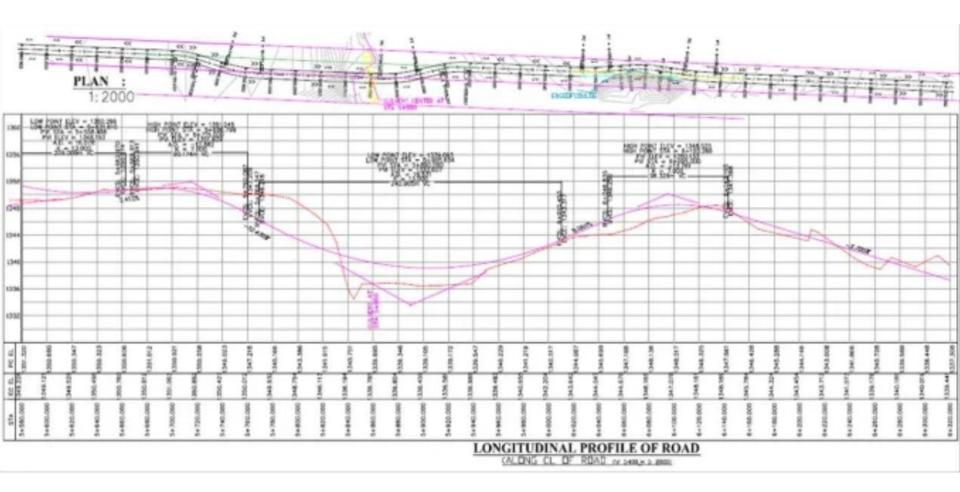
y_i - ordinate of the intermediate point on the vertical curve [m]

R - radius of the vertical curve [m]

$$y_i = -\frac{50^2}{2 \cdot 4000} = -0.31m$$

$$H_i = 640,45 + (-0.31) = 640,14 m$$

For a crest curve we substitute "+" and for a sag curve "-".


Point	Mileage	X	y	H _m	Н
BC	0+154,64	0	0,00	640,79	640,79
	0+164,64	10	0,01	640,42	640,43
	0+174,64	20	0,06	640,05	640,10
	0+184,64	30	0,13	639,68	639,80
	0+194,64	40	0,23	639,31	639,54
	0+204,64	50	0,36	638,94	639,29
	0+214,64	60	0,51	638,57	639,08
	0+224,64	70	0,70	638,20	638,90
Z 1	0+230,00	75,36	0,81	638,00	638,81
	0+235,36	70	0,70	638,03	638,73
	0+245,36	60	0,51	638,09	638,61
	0+255,36	50	0,36	638,15	638,51
	0+265,36	40	0,23	638,22	638,44
	0+275,36	30	0,13	638,28	638,41
	0+285,36	20	0,06	638,34	638,39
	0+295,36	10	0,01	638,40	638,41
EC	0+305,36	0	0,00	638,46	638,46

Source: https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto,q_auto,f_auto/gigs2/119097999

THANK YOU FOR YOUR ATTENTION

