Fundamentals of Road Construction

Lecturer: Marcin Bilski, BEng, PhD

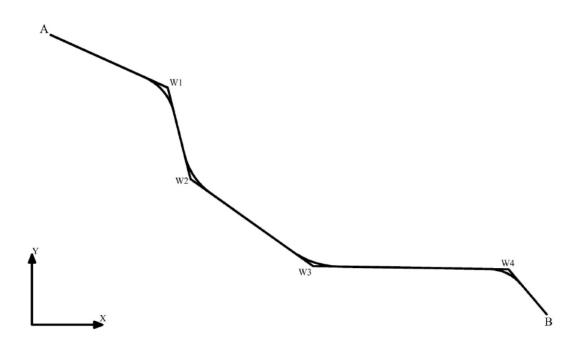
Division of Road Engineering
Institute of Civil Engineering
room 324B (building A2)
marcin.bilski@put.poznan.pl
marcin.bilski.pracownik.put.poznan.pl

Lecture 3

The subject of the lecture:

Horizontal alignment

Based on Polish legal acts and literature:


Regulation of the Minister of Infrastructure of June 24, 2022, on technical and construction regulations for public roads (Journal of Laws 2022, item 1518).

Rozporządzenie Ministra Infrastruktury z dnia 24 czerwca 2022 r. w sprawie przepisów techniczno-budowlanych dotyczących dróg publicznych (Dz.U. 2022 poz. 1518)

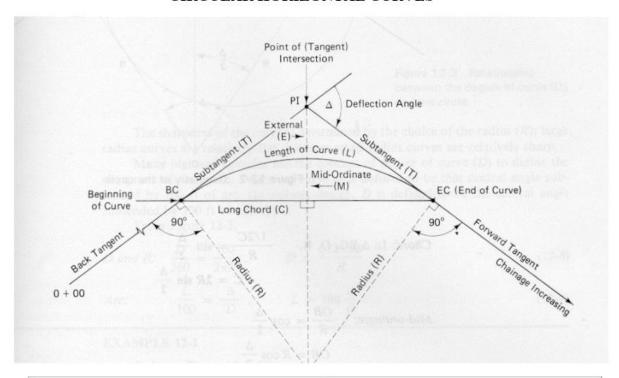
WR-D-22-2 Guidelines for the Design of Rural Road Sections, Part 2: Geometric Design

WR-D-22-2 Wytyczne projektowania odcinków dróg zamiejskich Część 2: Kształtowanie geometryczne

Coordinates of vertex points of horizontal alignment of the design road:

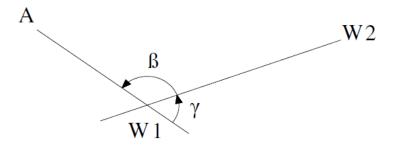
Point	Coordina	ates [m]
Font	X	Y
A	90,00	1400,00
W_1	655,05	1145,05
W_2	765,65	704,15
W_3	1356,55	283,45
W_4	2300,07	268,08
В	2485,00	50,00

Distance (length) between vertex points:


$$\overline{AW_1} = \sqrt{(X_{W1} - X_A)^2 + (Y_{W1} - Y_A)^2}$$

$$\overline{AW_1} = \sqrt{(655,05m - 90,00m)^2 + (1145,05m - 1400,00m)^2} = 619,90m$$

Section	Distance [m]
$\overline{AW_1}$	619,90
$\overline{W_1W_2}$	454,56
$\overline{W_2W_3}$	725,36
$\overline{W_3W_4}$	943,65
$\overline{W_4B}$	285,94
Σ	3029,41


Deflection angle of horizontal alignment of the design road:

CIRCULAR HORIZONTAL CURVES

BC =Beginning of Curve	EC = End of Curve
PC = Point of Curve	PT = Point of Tangent
TC = Tangent to Curve	CT = Curve to Tangent

Source: https://www.cpp.edu/~hturner/ce220/circular curves.pdf

$$\cos \beta_{1} = \frac{\overline{AW_{1}}^{2} + \overline{W_{1}W_{2}}^{2} - \overline{AW_{2}}^{2}}{2 \cdot \overline{AW_{1}} \cdot \overline{W_{1}W_{2}}}$$

$$\gamma_{1} = 180^{\circ} - \beta_{1}$$

$$\cos \beta_{1} = \frac{(619,90)^{2} + (454,56)^{2} - (969,90)^{2}}{2 \cdot 619,90 \cdot 454,56} = -0,620696$$

$$\beta_{1} = 128,3669^{\circ}$$

$$\gamma_{1} = 180^{\circ} - 128,3669^{\circ} = 51,6331^{\circ}$$

	Deflection angle γ					
	['	[rad]				
γ1	51°37'59"	51,6331	0,901167			
γ_2	40°28'06"	40,4684	0,706306			
γ3	34°30'59"	34,5163	0,602422			
γ4	48°46'09"	48,7691	0,851181			

Tortuosity of section of the design road:

$$K = \frac{\sum_{i=1}^{n} |\gamma_{i}|}{L}$$
 [°/km], where:

K - tortuosity of the section of the design road [%m]

 $\Sigma \gamma_n$ - sum of the absolute deflection angles of horizontal alignment [o]

L - distance between vertices [km]

n - number of vertices [-]

$$K = \frac{51,6331^{\circ} + 40,4684^{\circ} + 34,5163^{\circ} + 48,7691^{\circ}}{3,03} = \frac{175,3867^{\circ}}{3,03}$$

$$K = 58 \text{ °/km}$$

The radius of a horizontal curve and the transverse slope can be:

1) calculated

$$R = \frac{V_{dp}^2}{127(0,925 \cdot n \cdot f + 0,01 \cdot q)}$$

where:

R - radius of horizontal curve[m], the calculation result can be rounded, but not more than to ±5% of the value calculated from the formula,

V_{dp} - design speed [km/h],

127 - coefficient resulting from the conversion of units,

0,925 - coefficient taking into account the reduction of the coefficient of friction in the transverse direction in relation to the coefficient of friction in the longitudinal direction,

q - traversive slope [%]; generates values: as for example straight (with slope \leq -2%) and from 2 to 7%,

n -unit coefficient of the friction coefficient f, permitted for use in the direction perpendicular to the drive [-]; the value n is assumed due to:

$$n = \begin{cases} 0,20 & \text{for } q \le -2\% \\ \\ 0,06q - 0,02 & \text{for } q \ge 2\% \end{cases}$$

f - the nominal friction coefficient [-]; the value of f is taken from

$$f = -0.124 \ln(V_{dp}) + 0.8912$$

The radius of a horizontal curve and the transverse slope can be:

2) adopted according to the table

Relationship between the horizontal curve radius and the transverse slope

	q [%]								
V ₄ -2	-2,5	-2,0"		2.5	2.0	4.0		0.00	- 00
	As in a strai	ght section	2,0°	2,5	3,0	4,0	5,0	6,0 ²⁾	7,02)
140	≥5 750	-	-	2 600	2 200	1 600	1 250	1 050	900
130	≥4 750	-	-	2 200	1 850	1 350	1 050	875	750
120	≥3 800	-	-	1 850	1 550	1 150	900	750	625
110	≥3 000	≥2 600	1 950	1 550	1 250	925	725	600	525
100	≥2 300	≥2 000	1 600	1 250	1 000	750	600	490	420
90	≥1 750	≥1 550	1 250	975	800	600	470	390	330
80	≥1 300	≥1 150	975	750	625	450	360	300	250
70	≥900	≥825	725	550	460	340	270	220	190
60	≥625	≥550	500	400	330	240	190	160	130
50	≥390	≥360	340	270	220	160	130	100	90
40	≥230	≥220	210	160	130	100	80	65	55
30	≥110	≥110	110	85	70	50	40	35	30

¹⁾ A 2% transversive slope is not permitted on a class A, S or GP road or on a class G, Z, L or D road with a single-slope road section width exceeding 10.00 m (in accordance with subchapter 4.4.2)

²⁾ It is not recommended to use

Recommended minimum horizontal curve radius:

a) due to ride time

$$R_{\min} = \frac{2 \cdot v_{dp}}{\gamma} [m]$$

where:

V_{dp} - design speed [m/s]

γ - deflection angle of horizontal alignment [rad]

b) due to visibility at night

Minimum recommended radius of horizontal curve ensuring visibility of the path lane in the light of headlights

V _Φ [km/h]	≥100	90	80	70	60	50	40	30
Minimum recommended radius of horizontal curve ensuring visibility of the path lane in the light of headlights [m]	1 600	1 400	1 100	650	400	230	130	60

Checking the requirements for the assumed radius of horizontal curves

a) roll-over stability condition

$$R_{\min} = \frac{v^2}{g \cdot \left(\frac{b}{2h} \pm i_0\right)}$$
, [m] where:

v- speed [m/s]

$$v = \begin{cases} v_p - \text{road of the class } Z \text{ and lower (desgin speed)} \\ v_m - \text{road of the class } G \text{ and upper (reliable speed)} \end{cases}$$

g- acceleration due to gravity $g \approx 9.81 \text{ m/s}^2$

b- wheelbase vehicle (passenger car 1.5-1.8 m, lorry 2.0-2.4 m)

h- height of the center of gravity of the vehicle (passenger car 0.9-1.2 m, lorry 1.5-1.6 m)

 i_0 - the transverse slope of the road on the curve [-]

$$R_{\min} = \begin{cases} \frac{v_p^2}{g \cdot \left(\frac{b}{2h} - i_0\right)} [m] & - \text{ two-side slop of the trafficway} \\ \frac{v_p^2}{g \cdot \left(\frac{b}{2h} + i_0\right)} [m] & - \text{ one-side slope of the trafficway} \end{cases}$$

$$R_{\min}^{(2)} = \frac{16,67^2}{9,81 \cdot (\frac{1,50}{2 \cdot 1,20} + 0,04)} = 42,60m$$

	i _o [%]	R _m	in (2)
		+ i _o	- i _o
W1	4,0	42,60	_
W2	3,5	42,92	_
W3	3,0	43,25	
W4	5,0	41,97	_

b) slip stability condition

$$R_{\min} = \frac{v^2}{g \cdot (\varphi_R \pm i_0)}$$
 [m], where:

v-speed [m/s]

$$v = \begin{cases} v_p - \text{ road of the class Z and lower (desgin speed)} \\ v_m - \text{ road of the class G and upper (reliable speed)} \end{cases}$$

g- acceleration due to gravity $g \approx 9.81 \text{ m/s}^2$

 $\varphi_{\rm R}$ - coefficient of transverse adhesion of the tire to the road

 i_0 - the transverse slope of the road on the curve [-]

$$R_{\min} = \begin{cases} \frac{v_p^2}{g \cdot (\varphi_R - i_0)} [m] & - \text{two-side slop of the trafficway} \\ \frac{v_p^2}{g \cdot (\varphi_R + i_0)} [m] & - \text{one-side slope of the trafficway} \end{cases}$$

$$\varphi_{R} = 0,2 [-]$$

wet asphalt surface

$$R_{\min}^{(3)} = \frac{16.67^2}{9.81 \cdot (0.20 + 0.04)} = 118.03m$$

	; [0/.]	$R_{min}^{(3)}$) [m]
	i _o [%]	+ i _o	- i _o
W1	4,0	118,03	_
W2	3,5	120,54	_
W3	3,0	123,16	_
W4	5,0	113,31	_

c) driving comfort condition

$$R_{\min} = \frac{v^2}{g \cdot (\mu \pm i_0)}$$
 [m], where:

v-speed [m/s]

$$v = \begin{cases} v_p - \text{ road of the class } Z \text{ and lower (desgin speed)} \\ v_m - \text{ road of the class } G \text{ and upper (reliable speed)} \end{cases}$$

g- acceleration due to gravity $g \approx 9.81 \text{ m/s}^2$

μ- transverse acceleration factor [-]

 i_0 - the transverse slope of the road on the curve [-]

$$R_{\min} = \begin{cases} \frac{v_p^2}{g \cdot (\mu - i_0)} [m] & - \text{ two-side slop of the trafficway} \\ \frac{v_p^2}{g \cdot (\mu + i_0)} [m] & - \text{ one-side slope of the trafficway} \end{cases}$$

It stands out due to the driving comfort:

- μ = 0.02 a passenger who does not observe the road, will not distinguish driving between section of straight or curved; the driver feels no tension
- μ = 0,06 a passenger has a poor feel of driving along the curvilinear section;
 the driver feels small tension
- μ = 0,10 a passenger feels the driving along the curvilinear section, but does not feel discomfort; the driver clearly feels the tension
- μ = 0,17 driving along a curvilinear section is inconvenient for everyone

adopted $\mu = 0.10$ [-], possibly $\mu = 0.12$ [-]

$$R_{\min}^{(4)} = \frac{16,67^2}{9.81 \cdot (0.10 + 0.04)} = 202,34m$$

	; [<i>0</i> /]	R _m	(4) in
	i _o [%]	+ i _o	- i _o
W1	4,0	202,34	_
W2	3,5	209,83	_
W3	3,0	217,90	_
W4	5,0	188,85	

JUXTAPOSITION R_{min}

	R (1)	R min (2)	R min (3)	R min (4) comfort	i _o [%]	Adopted R [m]
W1	250	42,60	118,03	202,34	4,0	250
W2	320	42,92	120,54	209,83	3,5	320
W3	380	43,25	123,16	217,90	3,0	380
W4	200	41,97	113,31	188,85	5,0	200

Checking the ratio of horizontal curve radius to the length of the straight section

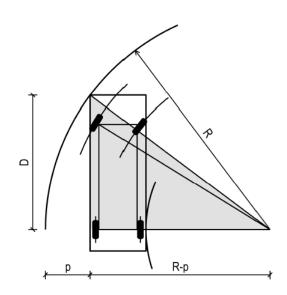
L < 500 m

where

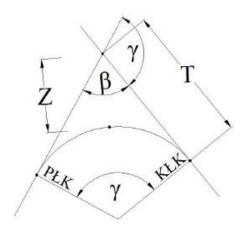
L - length of the straight section

Checking the ratio of the radius of adjacent horizontal curves

Recommended maximum values of the ratio of radius adjacent horizontal curves


The value of the smaller radius (R ₁) [m]	<300	300-799	800-1 500	>1 500
The largest ratio of radius adjacent horizontal curves $(R_2:R_1,R_2>R_1)$	1,5	2,0	2,5	facultative

Widening on the horizontal curve


Formulas for calculating the amount of lane widening for typical size vehicles

typical size vehicle		D value	Formula for calculating the
type	symbol	[m]	amount of line widening p [m]
passenger vehicle	PO	3,90	8/R
municipal vehicle	PK	6,50	20/R
two-axle bus	A2	9,70	50/R
three-axle bus	А3	10,60	60/R
truck with trailer	PN	-	00/K

^{*} in individual analyses for vehicles with an extended rear axle, the calculation assumes the position of the rear axle halfway between the extreme real rear axles

Calculation of basic elements of a horizontal curve

Signs:

PŁK – BC – begin of curve

KŁK – EC – end of curve

Z – E – external

T – tangent

Curve 1

$$\gamma_1 = 51,6331^{\circ}$$
 $R_1 = 250 \text{ m}$

$$R_1 = 250 \text{ m}$$

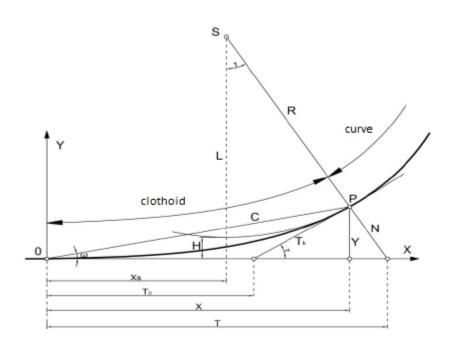
- calculating the tangent of a curve

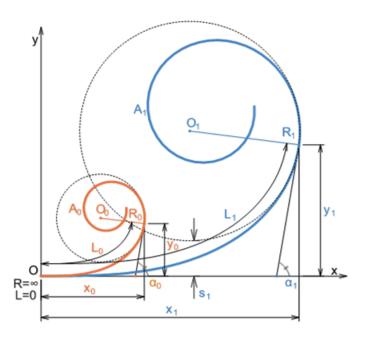
$$T_1 = R_1 \cdot tg \frac{\gamma_1}{2} = 250 \cdot tg \frac{51,6331}{2} = 120,94 m$$

- calculating the external of a curve

$$Z_1 = \frac{R_1}{\cos \frac{\gamma_1}{2}} - R_1 = 250 \cdot \left(\frac{1}{\cos \frac{51,6331^{\circ}}{2}} - 1 \right) = 27,72 \, m$$

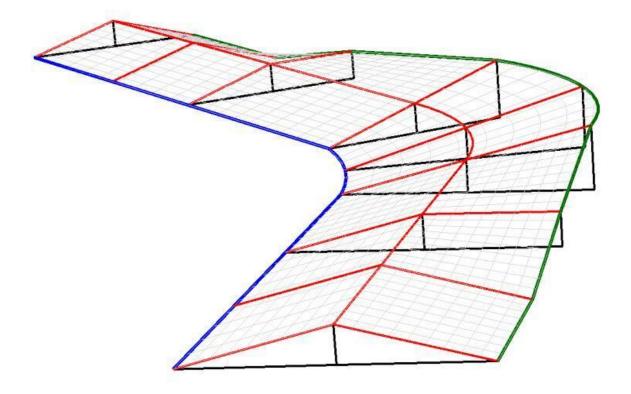
- curve length calculation


$$D_1 = R_1 \cdot \frac{\pi}{180} \cdot \gamma_1 = 250 \cdot \frac{\pi}{180} \cdot 51,6331^o = 225,29m$$


- widening on a curve

The widening is used when its value is greater than or equal to 0.2 m

	R [m]	γ [°]	T [m]	Z [m]	D [m]	$\frac{20}{R}$	p [m]
Curve 1	250	51,6331	120,94	27,72	225,29	0,08	_
Curve 2	320	40,4684	117,95	21,05	226,02	0,06	_
Curve 3	380	34,5163	118,05	17,91	228,92	0,05	_
Curve 4	200	48,7691	90,66	19,59	170,24	0,10	_


Determination of the clothoid a-parameter

Source: https://pwayblog.com/2016/07/03/the-clothoid/

The road ramp

Source: https://docplayer.pl/docs-images/64/51106521/images/11-1.jpg

Determination of the clothoid a-parameter

1) dynamics condition

$$a_{\min} = \sqrt{\frac{v^3}{k}} [m]$$
, where:

a - clothoid a-parameter [m]

v - speed [m/s]

$$v = v_p$$
 for all road classes $\Rightarrow v = v_p = 60 \frac{km}{h} \Rightarrow v = 16,67 \frac{m}{s}$

$$k$$
 – permissible increase centripetal acceleration $\Rightarrow V_p = 60 \frac{km}{h} \Rightarrow k = 0.7 \frac{m}{s^3}$

$$a_{\min} = \sqrt{\frac{16,67^3}{0,7}} = 81,35m$$

Maximum increase in centripetal acceleration acting on the vehicle on the transition curve

V _≠ [km/h]	≥100	90	80	70	60	50	≤40
Maximum increase in centripetal acceleration acting on the vehicle on the transition curve [m/s2]	0,3	0,4	0,5	0,6	0,7	0,8	0,9

2) aesthetics condition

$$a_{\min} = \frac{1}{3} R[m]$$

a = R[m], where:

R- radius of the horizontal curve [m]

$$a_{1 \min} = \frac{1}{3} \cdot 200 = 66,67m$$

$$a_{1 \text{max}} = 200 m$$

	R [m]	a _{min} [m]	a _{max} [m]
curve 1	250	83,33	250
curve 2	320	106,67	320
curve 3	380	126,67	380
curve 4	200	66,67	200

3) construction of a road ramp condition

$$a_{\min} = \sqrt{\frac{R \cdot B}{2} \cdot \frac{i_n + i_o}{i_{d \max}}}$$
 [m], where:

R - radius of the horizontal curve [m]

 $B-{
m roadway}$ width [m]; traffic line width outside the built-up area for a Z-class road is 2.75-3.00 m; adopted 6,00 m

 i_o – the transverse slope of the roadway on a curvilinear section [-]

 i_n — the transverse slope of the roadway on a straight section

 i_d – additional slope of the roadway on the road ramp [-]

$$i_{d \min} \le i_d \le i_{d \max}$$

$$i_{d \min} = 0.1 \cdot \frac{B}{2} = 0.1 \cdot \frac{6,00}{2} = 0.3\%$$

$$i_{d \max} = 1,6\%$$
 for design speed $v_P = 60 \frac{km}{h}$

$$0,\!003 \leq i_d \leq 0,\!016 \hspace{1cm} \text{adopted} \hspace{1cm} i_d = 0,\!016$$

Additional slope of the road edge

Design speed	Additional slope of the road edge [%]				
(km/h)	minimal on a section with a transverse slope	maximal			
≥100		0,9			
80-90	0.4-	1,0			
60-70	0,1a	1,6			
≤50		2,0			

$$a_{1\text{min}} = \sqrt{\frac{250 \cdot 6,00}{2} \cdot \frac{0,02 + 0,04}{0,016}} = 53,03m$$

	R [m]	B [m]	in [%]	i _o [%]	i _d [%]	a _{min} [m]
curve 1	250	6,00	2,0	4,0	1,6	53,03
curve 2	320	6,00	2,0	3,5	1,6	57,45
curve 3	380	6,00	2,0	3,0	1,6	59,69
curve 4	200	6,40	2,0	5,0	1,6	52,92

4) widening of the roadway condition

calculated for the horizontal curves which have widening

$$a_{\min} = 1.86 \cdot \sqrt[4]{R^3 \cdot p_c}$$
 [m], where:

R - radius of the horizontal curve [m]

 $p_c - \mbox{ complete}$ widening of the roadway on the curve [m]

$$a_{4\min} = 1,86 \cdot \sqrt[4]{200^3 \cdot 0,4} = 78,67 \ m$$

5) geometric condition

$$a_{\text{max}} = R \cdot \sqrt{\gamma}$$
 [m], where:

R — radius of the horizontal curve [m]

 $\gamma-$ deflection angle of the horizontal curve [rad]

$$a_{1_{\text{max}}} = 250 \cdot \sqrt{0.901167} = 237.32 \ m$$

	R [m]	γ [rad]	a _{max} [m]
curve 1	250	0,901167	237,32
curve 2	320	0,706306	268,93
curve 3	380	0,602422	294,94
curve 4	200	0,851181	184,52

6) horizontal curve offset condition

recommended condition

for
$$H_{\min} = 0.50m \implies a_{\min} = 1.863 \cdot R^{\frac{3}{4}}$$
 [m],
for $H_{\max} = 2.50m \implies a_{\max} = 2.783 \cdot R^{\frac{3}{4}}$ [m], where:

$$a_{1_{\text{min}}} = 1,863 \cdot 250^{\frac{3}{4}} = 117,00m$$

 $a_{1_{\text{max}}} = 2,783 \cdot 250^{\frac{3}{4}} = 174,97m$

	R [m]	a _{min} [m]	a _{max} [m]
curve 1	250	117,00	174,97
curve 2	320	140,80	210,56
curve 3	380	160,17	239,53
curve 4	200	98,97	148,01

7) proportionality condition

recommended condition

for L:Ł:L = 1:4:1
$$\Rightarrow a_{\min} = R \cdot \sqrt{\frac{\gamma}{5}}$$
 [m],
for L:Ł:L = 1:1:1 $\Rightarrow a_{\max} = R \cdot \sqrt{\frac{\gamma}{2}}$ [m], gdzie:

R- radius of the horizontal curve [m]

γ- deflection angle [rad]

$$a_{1\min} = 250 \cdot \sqrt{\frac{0,901167}{5}} = 106,13m$$

$$a_{1\max} = 250 \cdot \sqrt{\frac{0,901167}{2}} = 167,81m$$

	R [m]	γ [rad]	a _{min} [m]	a _{max} [m]
curve 1	250	0,901167	106,13	167,81
curve 2	320	0,706306	120,27	190,17
curve 3	380	0,602422	131,90	208,55
curve 4	200	0,851181	82,52	130,47

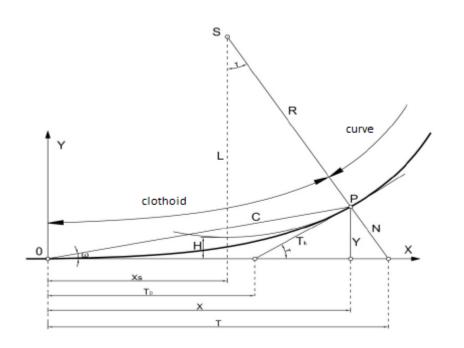
Signs:

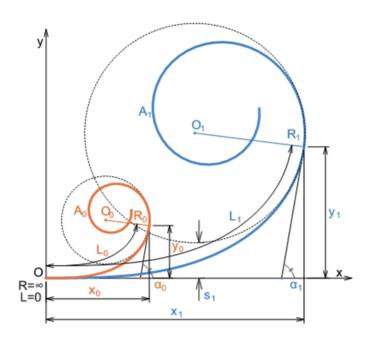
L – Cl – the length of the clothoid

Ł − Cu − the length of the curve

JUXTAPOSITION OF A-PARAMETER VALUES

	R [m]	a _{min} [m]					
curve 1	250	81,33	83,33	53,03	_	117,00	106,13
curve 2	320	81,33	106,67	57,45	_	140,80	120,27
curve 3	380	81,33	126,67	59,69	_	160,17	131,90
curve 4	200	81,33	66,67	52,92	78,67	98,97	82,52


	R [m]	a _{max} [m]	a _{max} [m]	a _{max} [m] offset	a _{max} [m]
curve 1	250	250	237,32	174,97	167,81
curve 2	320	320	268,93	210,56	190,17
curve 3	380	380	294,94	239,53	208,55
curve 4	200	200	184,52	148,01	130,47


ADOPTION OF A-PARAMETER VALUE

$$a_{\min}^{(\max)} \le a \le a_{\max}^{(\min)}$$

	R [m]	a _{min} (max) [m]	a _{max} (min) [m]	a [m]
curve 1	250	117,00	167,81	136,93
curve 2	320	140,80	190,17	154,92
curve 3	380	160,17	208,55	169,94
curve 4	200	98,97	130,47	109,55

Determination of characteristic values of a colloidal transition curve

Source: https://pwayblog.com/2016/07/03/the-clothoid/

a) clothoid length

$$L = \frac{a^2}{R}$$
 [m], where:

- L- length of the clothoid [m]
- a- clothoid a-parameter [m]
- R- radius of horizntal curve [m]

$$L = \frac{136,93^2}{250} = 75,00 \, m$$

	R [m]	a [m]	L [m]
curve 1	250	136,93	75,00
curve 2	320	154,92	75,00
curve 3	380	169,94	76,00
curve 4	200	109,55	60,00

b) tangent angle at the end of the transition curve

$$\tau = \frac{L}{2 \cdot R} \quad [m]$$

$$\tau_{\min} = 3^\circ \le \tau \le \tau_{\max} = 30^\circ , \text{ where:}$$

 τ - tangent angle at the end of the transition curve [rad]

L- length of the clothoid [m]

R- radius of the horizontal curve [m]

$$\tau = \frac{75,00}{2 \cdot 250} = 0,150000 \quad rad$$

	R [m]	L [m]	τ [rad]	τ ['	·]
curve 1	250	75,00	0,150000	8°35'40"	8,5944
curve 2	320	75,00	0,117188	6°42'52"	6,7143
curve 3	380	76,00	0,100000	5°43'46"	5,7296
curve 4	200	60,00	0,150000	8°35'40"	8,5944

For all transition curve the condition $\tau_{\rm min}=3^{\circ} \le \tau \le \tau_{\rm max}=30^{\circ}$ is fulfilled

c) coordinates of the end of the transition curve

$$X = L - \frac{L^5}{40a^4} + \frac{L^9}{3456a^8} - (...)[m]$$

$$X = L - \frac{L^5}{40a^4} + \frac{L^9}{3456a^8} - (...)[m]$$

$$Y = \frac{L^3}{6a^2} - \frac{L^7}{336a^6} + \frac{L^{11}}{42240a^{10}} - (...)[m], \text{ where:}$$

X- coordinates of the end of the transition curve [m]

Y- coordinates of the end of the transition curve [m]

$$X = 75,00 - \frac{75,00^{5}}{40.136.93^{4}} + (...) = 74,83m$$

$$X = 75,00 - \frac{75,00^5}{40.136,93^4} + (...) = 74,83m$$

$$Y = \frac{75,00^3}{6.136,93^2} - \frac{75,00^7}{336.136,93^6} + (...) = 3,74m$$

	L [m]	a [m]	X [m]	Y [m]
curve 1	75,00	136,93	74,83	3,74
curve 2	75,00	154,92	74,90	2,93
curve 3	76,00	169,94	75,92	2,53
curve 4	60,00	109,55	59,87	3,00

d) coordinates of the center of horizontal curve

$$X_s = X - (R \cdot \sin \tau) [m]$$
 $Y_s = Y + (R \cdot \cos \tau) [m]$, where:

X_S- coordinates of the center of reduced horizontal curve [m]

Ys- coordinates of the center of reduced horizontal curve [m]

 τ - deflection angle of tangent on the end of the transition curve [rad]

$$X_s = 74.83 - (250 \cdot \sin 0.150000) = 37.47m$$
 $Y_s = 3.74 + (250 \cdot \cos 0.150000) = 250.94m$

	R [m]	X [m]	Y [m]	τ [rad]	X_s [m]	Y_s [m]
curve 1	250	74,83	3,74	0,150000	37,47	250,94
curve 2	320	74,90	2,93	0,117188	37,48	320,73
curve 3	380	75,92	2,53	0,100000	37,99	380,63
curve 4	200	59,87	3,00	0,150000	29,98	200,75

e) retraction of the horizontal curve

$$H = Y - R \cdot (1 - \cos \tau) [m]$$

$$H_{\min} = 0.5m \le H \le H_{\max} = 2.5m, \text{ where:}$$

H- retraction of the horizontal curve [m]

τ- deflection angle of the tangent on the end of the horizontal curve [rad]

$$H = Y - R \cdot (1 - \cos \tau) = 3.74 - 250 \cdot (1 - \cos 0.150000) = 0.94m$$

	R [m]	Y [m]	τ [rad]	H [m]
curve 1	250	3,74	0,150000	0,94
curve 2	320	2,93	0,117188	0,73
curve 3	380	2,53	0,100000	0,63
curve 4	200	3,00	0,150000	0,75

For all transition curve the condition $H_{\min} = 0.5m \le H \le H_{\max} = 2.5m$

$$H_{\min} = 0.5m \le H \le H_{\max} = 2.5m$$

is fulfilled

f) external

$$N = \frac{Y}{\cos \tau}$$
 [m], where:

N- external of the transition curve [m]

τ- deflection angle of the tangent on the end of the horizontal curve [rad]

$$N = \frac{3,74}{\cos 0,150000} = 3,79 \ m$$

	Y [m]	τ [rad]	N [m]
curve 1	3,74	0,150000	3,79
curve 2	2,93	0,117188	2,95
curve 3	2,53	0,100000	2,54
curve 4	3,00	0,150000	3,03

g) short tangent

$$T_K = \frac{Y}{\sin \tau}$$
 [m], where:

T_K- short tangent [m]

 τ - deflection angle of the tangent on the end of the horizontal curve [rad]

$$T_K = \frac{3,74}{\sin 0.150000} = 25,05 m$$

	Y [m]	τ [rad]	T_{K} [m]
curve 1	3,74	0,150000	25,05
curve 2	2,93	0,117188	25,03
curve 3	2,53	0,100000	25,36
curve 4	3,00	0,150000	20,04

h) long tangent

$$T_{D} = X - Y \cdot ctg \ au \ [m], \ \ {
m where:}$$

 T_D - long tangent [m]

 τ - deflection angle of the tangent on the end of the horizontal curve [rad]

$$T_D = 74,83 - 3,74 \cdot ctg \ 0,150000 = 50,06 \ m$$

	X [m]	Y [m]	τ [rad]	$T_{D}[m]$
curve 1	74,83	3,74	0,150000	50,06
curve 2	74,90	2,93	0,117188	50,04
curve 3	75,92	2,53	0,100000	50,69
curve 4	59,87	3,00	0,150000	40,05

i) T_s section

$$T_S = (R + H) \cdot tg \frac{\gamma}{2}$$
 [m], where:

 T_S - length of the section T_S [m] γ - deflection angle of the horizontal curve [rad]

$$T_s = (250 + 0.94) \cdot tg \frac{0.901167}{2} = 121.40m$$

	R [m]	H [m]	γ [rad]	$T_s[m]$
curve 1	250	0,94	0,901167	121,40
curve 2	320	0,73	0,706306	118,22
curve 3	380	0,63	0,602422	118,25
curve 4	200	0,75	0,851181	91,00

j) integer tangent

$$T_0 = X_s + T_S$$
 [m], where:

 $T_0\text{---integer tangent [m]}$

$$T_0 = 37,47 + 121,40 = 158,87 \text{ m}$$

	X_s [m]	T_{s} [m]	$T_0[m]$
curve 1	37,47	121,40	158,87
curve 2	37,48	118,22	155,71
curve 3	37,99	118,25	156,24
curve 4	29,98	91,00	120,98

k) central angle of the reduced horizontal curve

$$\alpha = \gamma - 2 \cdot \tau$$
 [m], where:

- γ- deflection angle of the horizontal curve [rad]
- τ deflection angle of the tangent on the end of the horizontal curve [rad]
- $\alpha\text{--}$ central angle of the reduced horizontal curve [rad]

$$\alpha = 0.901167 - 2.0.150000 = 0.601167$$
 rad

	γ [rad]	τ [rad]	α [rad]	α [°]
curve 1	0,901167	0,150000	0,601167	34°26'40"	34,4443
curve 2	0,706306	0,117188	0,471931	27°02'23"	27,0397
curve 3	0,602422	0,100000	0,402422	23°03'26"	23,0571
curve 4	0,851181	0,150000	0,551181	31°34'49"	31,5803

I) length of the reduced horizontal curve

$$\mathbf{L} = \mathbf{R} \cdot \mathbf{\alpha}$$
 [m], where:

 $\alpha\text{--}$ central angle of the reduced horizontal curve [rad]

Ł- length of the reduced horizontal curve [m]

£ = 250.0,601167 = 150,29 m

	R [m]	α [rad]	Ł [m]
curve 1	250	0,601167	150,29
curve 2	320	0,471931	151,02
curve 3	380	0,402422	152,92
curve 4	200	0,551181	110,24

Coordinates for staking out the transition curve

Intermediate points for the transition curves in local coordinate systems

$$x(l) = l - \frac{l^5}{40a^4} + \frac{l^9}{3456a^8} - (...)[m]$$
 $y(l) = \frac{l^3}{6a^2} - \frac{l^7}{336a^6} + \frac{l^{11}}{42240a^{10}} - (...)[m], \text{ where:}$

$$y(l) = \frac{l^3}{6a^2} - \frac{l'}{336a^6} + \frac{l^{11}}{42240a^{10}} - (...)[m], \text{ where:}$$

- x(l) local coordinate of the intermediate point of the transition curve [m]
- y(1) local coordinate of the intermediate point of the transition curve [m]

where: $0 \le l \le L$

$$x(l) = 50,00 - \frac{50,00^{5}}{40 \cdot 136,93^{4}} + (...) = 49,98m \qquad y(l) = \frac{50,00^{3}}{6 \cdot 136,93^{2}} - \frac{50,00^{7}}{336 \cdot 136,93^{6}} + (...) = 1,11m$$

Transformation of the coordinate from the local system to the global system

$$\begin{cases} X = x \cdot \cos \alpha - y \cdot \sin \alpha + a \\ Y = x \cdot \sin \alpha + y \cdot \cos \alpha + b \end{cases}$$

Mileage of the horizontal alignment

		0+000,00	PA=PPT		
$+AW_1$	+	619,90			
		0+619,90	W,		
$-T_{01}$	_	158,87	1		
- 01		0+461,04	PKP ₁		
$+L_1$	+	75,00	1101		
			KKP ₁ =PŁK ₁	W1-W1*	= 2·T ₀ -2·L-Ł
$+L_1/2$	+	75,15	Terri [-T Erri		= 2.158,87-2.75,00-150,29
1272		0+611,18	ŚŁKı		= 17,45
$+L_1/2$	+		32111	17,15	17,10
			KŁK ₁ =KKP ₁		
$+L_1$	+	75,00			
		0+761,33	PKP ₁		
$-T_{01}$	_	158,87	1		
- 01		0+602,45	Wı*		
$+W_1W_2$	+	454,56	1		
		1+057,01	W ₂		
$-T_{02}$	_	155,71	-		
		0+901,31	PKP ₂		
+L ₂	+	75,00			
		0+976,31	KKP ₂ =PŁK ₂	$W_2 - W_2^*$	$= 2 \cdot T_0 - 2 \cdot L - L$
$+L_2/2$	+	75,51		1057,01-1046,62	= 2.155,71-2.75,00-151,02
		1+051,82	ŚŁK ₂	10,40	= 10,40
$+L_2/2$	+	75,51			
		1+127,33	KŁK ₂ =KKP ₂		
$+L_2$	+	75,00			
		1+202,33	PKP ₂		
$-T_{02}$	-	155,71			
		1+046,62	W_2^*		
$+W_2W_3$	+	725,36			
		1+771,98	W_3		
$-T_{03}$	_	156,24			
		1+615,75	PKP ₃		
+L ₃	+	76,00			
		1+691,75	KKP ₃ =PŁK ₃	$W_3 - W_3 *$	$= 2 \cdot T_0 - 2 \cdot L - L$
$+L_3/2$	+	76,46		1771,98-1764,43	= 2.156,24-2.76,000-152,92
		1+768,21	ŚŁK ₃	7,55	= 7,55
$+L_3/2$					
123/2	+	76,46			

Signs:

PA - PPT - BDR - begin of the design road

W - V - vertex point

PŁK – BC – begin of the curve

KŁK – EC – end of the curve

PKP – BTC – begin of the transition curve

KKP – ETC – end of the transition curve

ŚŁK – CC – center of the curve

PB – KPT – EDR – end of the design road

L – the length of the clothoid

L - L' – the length of the reducted curve

T_o – the length of the integer tangent

$+L_3$	+	76,00			
		1+920,67	PKP ₃	•	
$-T_{03}$	_	156,24			
		1+764,43	W ₃ *		
$+W_3W_4$	+	943,65			
		2+708,08	W_4	•	
$-T_{04}$	-	120,98			
		2+587,10	PKP ₄		
$+L_4$	+	60,00			
		2+647,10	KKP ₄ =PŁK ₄	$W_4-W_4* =$	2·T ₀ -2·L-Ł
$+L_4/2$	+	55,12		2708,08-2696,36 =	2.120,98-2.60,000-110,24
		2+702,22	ŚŁK ₄	11,72 =	11,72
$+L_4/2$	+	55,12			
		2+757,34	KŁK ₄ =KKP ₄	•	
$+L_4$	+	60,00			
		2+817,34	PKP ₄	•	
$-T_{04}$	_	120,98			
		2+696,36	W ₄ *	•	
$+W_4B$	+	285,94			
		2+982,30	В		

Verification:

 $\begin{array}{l} AW_1 - (W_1 \! - \! W_1^*) + W_1W_2 - (W_2 \! - \! W_2^*) + W_2W_3 - (W_3 \! - \! W_3^*) + W_3W_4 - (W_4 \! - \! W_4^*) + W_4B = KT\\ 619,90 - (619,90 \! - \! 602,\!45) + 454,\!56 - (1057,\!01 \! - \! 1046,\!62) + 725,\!36\\ - (1771,\!98 \! - \! 1764,\!43) + 943,\!65 - (2708,\!08 \! - \! 2696,\!36) + 285,\!94 = 2982,\!30\\ 2982,\!30 = 2982,\!30 \end{array}$

THANK YOU FOR YOUR ATTENTION