Fundamentals of Road Construction

Lecturer : Marcin Bilski, BEng, PhD

Division of Road Engineering Institute of Civil Engineering room 324B (building A2) marcin.bilski@put.poznan.pl marcin.bilski.pracownik.put.poznan.pl

Lecture 4

The subject of the lecture: Vertical alignment Vertical alignment is the combination of circular vertical curves and tangent (straight) sections of a particular slope designed to achieve this objective. The design of vertical alignment is concerned with gradients, crest and sag curves. A crest curve is a convex vertical curve. A sag curve is a concave vertical curve.

Source: Low Volume Roads Manual, Volume 2: Geometric Design and Road Safety, Roads Authority Malawi, 2020

Terrain vertical following-coordinates:

No.	Mileage	Vertical coordinates [m]	Description		
1.	0+000,00	647,50	PA, contour line		
2.	0+058,20	645,00	contour line		
3.	0+100,00	643,00	Hm - hectometer		
4.	0+120,74	642,50	contour line		
5.	0+173,98	640,00	contour line		
17.	0+417,29	635,00	contour line		
18.	0+441,13	637,50	contour line		
19.	0+500,00	638,95	Hm - hectometer		
20.	0+500,89	639,00	PKP ₁		
21.	0+581,53	639,50	$KKP_1 = PEK_1$		
22.	0+600,00	639,80	Hm - hectometer		
23.	0+639,88	639,70	ŠŁK ₁		
24.	0+698,23	638,80	$KKP_1 = KLK_1$		
90.	2+999,34	617,50	PB, contour line		

Signs:

PA – PPT – BDR – begin of the design road

PŁK – BC – begin of the curve

KŁK – EC – end of the curve

PKP – BTC – begin of the transition curve

KKP - ETC - end of the transition curve

ŚŁK – CC – center of the curve

PB – KPT – EDR – end of the design road

Longitudinal section of a raod and terrain profile:

red line – a grade line

Geometric elements of the grade line:

Źródło: http://web.mit.edu/16.400/www/auto_sim/Help/SDLEventVC.htm

The minimum recommended distance between the bends of the gradeline

V _{dp} [km/h]	140	130	120	110	100	90	80	70	60	≤50
The minimum recommended distance between the bends of the gradeline [m]	1 000	800	600	500	400	375	350	300	250	-

Determination of the parameters of the grade line on sections with a constant slope:

Point	Mileage	Ordinate of breakdown [m a.s.l.]
A	0+000,00	646,50
Z1	0+230,00	638,00
Z2	0+639,88	640,50
Z3	1+330,00	624,60
Z4	2+380,00	612,45
Z5	2+718,36	611,00
В	2+999,34	616,50

a) ordinate of the points of bend of the grade line

b) slope of the grade line on sections with a constant slope

$$i = \frac{H_k - H_p}{L} \cdot 100$$
 [%], where:

 i - slope of the grade line on sections with a constant slope [%], between points of breakdown of the grade line niwelety),

 $H_{\rm p}-$ ordinate of a beginning of section of grade line with constant slope [m]

 H_k - ordinate of a beginning of section of grade line with constant slope [m]

 $L-\,$ length of section of grade line with constant slope [m]

$$i = \frac{638,00 - 646,50}{230,00} \cdot 100 = -3,696\%$$

wymagania

c) the angle of bend of the grade line

$$\alpha = |i_n - i_{n+1}|$$
 [%], where:

 $\begin{array}{l} \alpha - \mbox{ the angle of refraction of the grade line [\%]} \\ i_n - \mbox{ the slope of the grade line before bend [\%]} \\ i_{n+1} - \mbox{ the slope of the grade line after bend [\%]} \end{array}$

 $\alpha = |i_2 - i_3| = |0,610 - (-2,304)| = 2,914\%$

e) mean slope of the grade line for the bend

$$i_{sr} = \frac{i_n + i_{n+1}}{2}$$
 [%], where:

 $\begin{array}{l} i_{\dot{s}r}-\text{ mean slope of the grade line for the bend [\%]}\\ i_n-\text{ slope of the grade line before the bend [\%]}\\ i_{n+1}-\text{ slope of the grade line after the bend [\%]} \end{array}$

$$i_{sr} = \frac{i_2 + i_3}{2} = \frac{0,610 + (-2,304)}{2} = -0,847\%$$

Bend number	er Mileage Scheme		<i>i</i> before bend [%]	<i>i</i> after bend [%]	α[%]	i _{śr} [%]
Z1 sag	0+230,00		-3,696	0,610	4,306	-1,543
Z2 crest	0+639,88	•	0,610	-2,304	2,914	-0,847
Z3 sag	1+330,00	$\overline{\bigcirc} \overline{\bigcirc}$	-2,304	-1,157	1,147	-1,731
Z4 sag	2+380,00	$\overline{\bigcirc}$	-1,157	-0,429	0,729	-0,793
Z5 sag	2+718,36		-0,429	1,957	2,386	0,764

The list of parameters of the bends of the grade line

short Z = B - bend

Determination of the distance of the required stopping visibility:

$$\begin{split} L &= L_r + L_h + L_{bez} \\ L_Z &\geq L = v \cdot t + \frac{v^2}{2 \cdot g \cdot (0.95 \cdot \varphi + f - \left|i_{sr}\right|)} + 10 \ [\text{m}], \text{ where:} \end{split}$$

 $L_Z-\,$ required distance of the stopping visibility [m]

$$L =$$
length of the vehicle stopping distance [m]

v - speed [m/s]

$$v = \begin{cases} v_p + 10 - \text{ for road class Z and roads of lower classes} \\ v_m - \text{ for road class G and roads of higher classes} \end{cases} \Rightarrow v = v_p + 10 = 70 \frac{km}{h} \Rightarrow v = 19,44 \frac{m}{s}$$

- t driver reaction time [s], adopted t = 1 s
- g acceleration due to gravity [m/s²], g = 9,81 m/s²
- $\phi-\mbox{a}$ longitudinal coefficient of adhesion of the tire to the road surface

Coefficient was adopted for the wet asphalt surface: $\varphi = 0.35$ [-]

f- rolling friction coefficient for asphalt pavement in average condition adopted : f=0,018 [-]

 $i_{\dot{s}r}-$ mean slope of the grade line [-]

$$L_{\rm Z} = 19,44 \cdot 1 + \frac{19,44^2}{2 \cdot 9,81 \cdot (0,95 \cdot 0,35 + 0,018 - |0,01543|)} + 10 = 163,47m$$

Bend number	Mileage	Scheme	i _{śr} [–]	L [m] by formula	L _{Zmin} [m] by JoL16	adopted L _Z [m]
Z1 sag	0+230,00		-0,01543	86,96	90,00	90,00
Z2 crest	0+639,88	•	-0,00847	85,79	90,00	90,00
Z3 sag	1+330,00	$\overline{\bigcirc}$	-0,01731	87,28	90,00	90,00
Z4 sag	2+380,00	$\overline{\bigcirc}$	-0,00793	85,70	90,00	90,00
Z5 sag	2+718,36		0,00764	85,65	90,00	90,00

List of the distance of the required stopping visibility $\,L_{Z}\,$

Determination of the radius of vertical curves :

a) minimum radius due to the visibility for the crest curve (curve no 2)

requirement 1

$$\begin{array}{rcl} L_{z} \leq \frac{a}{\alpha} & \rightarrow & \operatorname{R_{min}} \mbox{ does not specify} \\ & \frac{a}{\alpha} = \frac{1,00}{0,02914} = 34,32 \ m \\ L_{Z} = 90,00 \ m \geq \frac{a}{\alpha} = 34,32 \ m, \mbox{ must be calculated } \ \operatorname{R_{min}} \end{array}$$

requirement 2

$$\frac{a}{\alpha} < L_Z \le \frac{2a}{\alpha} \quad \rightarrow \quad R_{\min} = \frac{2}{\alpha} \cdot \left(L_Z - \frac{a}{\alpha}\right) [m]$$
$$\frac{a}{\alpha} = 34,32 \ m \qquad \qquad \frac{2a}{\alpha} = \frac{2 \cdot 1,00}{0,02914} = 68,64 \ m$$

 L_Z = $90,00\ m$ $\,$ is not within the specified range

➢ requirement 3

$$L_{\rm Z} > \frac{2a}{\alpha} \rightarrow R_{\rm min} = \frac{L_{\rm Z}^2}{2a} [m]$$
, where:

 R_{min} - minimum radius of vertical curve [m] L_Z - required distance of the stopping visibility [m] a - localization of the observation point [m] a = 1,00m, α - the angle of bend of the grade line [rad]

$$L_Z = 90,00 \text{ m} \ge \frac{2a}{\alpha} = 68,64 \text{ m}$$

 $R_{\min} = \frac{90,00^2}{2 \cdot 1,00} = 4050,00 \text{ m}$

Bend no.	Milage	L _Z [m]	$\frac{a}{\alpha}$	$\frac{2a}{\alpha}$	Formula	R _{min} [m]
Z2 crest	0+639,88	90,00	34,32	68,64	$R_{\min} = \frac{L_Z^2}{2a}[m]$	4050,00

b) minimum radius due to the visibility for the sag curve (curve no 1, 3, 4, 5)

requirement 1

 $\begin{array}{ll} \alpha \leq 2\psi & \rightarrow & R_{min} \mbox{ does not specify} \\ \alpha = 0,04306 \mbox{ rad} \geq 2\psi = 0,0348 \mbox{ rad}, \mbox{ must be calculated } R_{min} \end{array}$

requirement 2

 $\frac{h}{\alpha - \psi} < L_z \leq \frac{2h}{\alpha - 2\psi} \rightarrow R_{\min} = \frac{2}{\alpha} \cdot \left(L_z - \frac{h + L_z \cdot \psi}{\alpha}\right) [m]$ $\frac{h}{\alpha - \psi} = 29,23 \qquad \qquad \frac{2h}{\alpha - 2\psi} = \frac{2 \cdot 0,75}{0,04306 - 2 \cdot 0,0174} = 181,69$ $L_z = 90,00 \text{ m is within the specified range}$ $R_{\min} = \frac{2}{\alpha} \cdot \left(L_z - \frac{h + L_z \cdot \psi}{\alpha}\right) [m], \text{ where:}$

R_{min} - radius of the vertical curve [m]

 α – the angle of bend of the grade line [%]

 L_Z – required distance of the stopping visibility [m]

 ψ – the elevation angle of the useful light beam from the headlight [rad] , adopted: ψ = 0,0174 rad

 ${\rm h}-{\rm height}$ of the optical axis of the headlight above the road surface [m], adopted: ${\rm h}=0,75~{\rm m}$

$$R_{\min} = \frac{2}{0,04306} \cdot \left(90,00 - \frac{0,75 + 90,00 \cdot 0,0174}{0,04306}\right) = 1681,97m$$

requirement 3

$$L_Z > \frac{2h}{\alpha - 2\psi} \longrightarrow R_{\min} = \frac{L_Z^2}{2 \cdot (h + L_Z \cdot \psi)} [m]$$
, where:

R_{min} - radius of the vertical curve [m]

 α – the angle of bend of the grade line [%]

 $L_{\rm Z}-$ required distance of the stopping visibility [m]

 ψ – the elevation angle of the useful light beam from the headlight [rad] , adopted: ψ = 0,0174 rad

h - height of the optical axis of the headlight above the road surface [m], adopted: <math>h = 0.75 m

Bend no.	Mileage	α [rad]	2ψ [rad]	Calculation R _{min}
Z1 sag	0+230,00	0,04306	0,0348	must be calculated
Z3 sag	1+330,00	0,01147	0,0348	does not specify
Z4 sag	2+380,00	0,00729	0,0348	does not specify
Z5 sag	2+718,36	0,02386	0,0348	does not specify

Bend number	Mileage	L _Z [m]	α [rad]	$\frac{2h}{\alpha - 2\psi}$	Formula	R _{min} [m]
Z1 sag	0+230,00	90,00	0,04306	181,69	$R_{\min} = \frac{2}{\alpha} \cdot \left(L_{z} - \frac{h + L_{z} \cdot \psi}{\alpha} \right) [m]$	1681,97

c) minimum radius due to the dynamics

$$R_{min} = 0,154 \cdot v^2$$
 [m], where:

 $\begin{aligned} \mathbf{R}_{\min} &- \text{ minimum radius of the vertical curve [m]} \\ \mathbf{v} &- \text{ speed [km/h]} \\ v &= \begin{cases} v_p &- \text{ for road class Z and roads of lower classes} \\ v_m &- \text{ for road class G and roads of higher classes} \end{cases} \implies v = v_p = 60 \frac{km}{h} \end{aligned}$

$$R_{\min} = 0,154 \cdot 60^2 = 554,40 \text{ m}$$

$$R_{\min} = \frac{100 \cdot v}{\alpha}$$
 [m], where:

$$\begin{aligned} &R_{\min} - \text{ minimum radius of the vertical curve [m]} \\ &v - \text{ speed [km/h]} \\ &v = \begin{cases} v_p - \text{ for road class Z and roads of lower classes} \\ v_m - \text{ for road class G and roads of higher classes} \end{cases} \implies v = v_p = 60 \frac{km}{h} \\ &\alpha - \text{ the angle of bend of the grade line [%]} \end{aligned}$$

$$R_{\min} = \frac{100 \cdot 60}{4,306} = 1393,54m$$

Bend number	Mileage	Scheme	α [%]	R _{min} [m]
Z1 sag	0+230,00	·•••	4,306	1393,54
Z2 crest	0+639,88	•	2,914	2059,11
Z3 sag	1+330,00	$\overline{\bigcirc}$	1,147	5231,93

For design speed $v_p = 60 \text{ km/h}$:

- > the smallest radius of the crest curve on a road with one carriageway $R_{min} = 2000 \text{ m}$
- > the smallest radius of the sag curve $R_{min} = 1500 m$

e) minimum radius due requirements (standards)

Minimum radius of crest and sag curves

V₄ [km/h]		140	130	120	110	100	90	80	70	60	50	40	30
radius of a crest curve [m]		18 500	13 500	10 000	7 000	5 000	3 500	2 100	1 300	1 000	600	300	150
radius of a sag curve [m]	section without lighting	6 000	5 200	4 400	3 700	3 500	3 000	2 400	1 700	1 200	800	450	250
	section with lighting						2 500	2 000	1 500	1 100	400	200	100

f) the adoption of values of the vertical curves

Bend number	Mileage	R _{min} [m] _{visibility}	R _{min} [m] _{dynamics}	R _{min} [m] aesthetics	R _{min} [m] requirements	Adopted R [m]
Z1 sag	0+230,00	1681,97	554,40	1393,54	1500	3500
Z2 crest	0+639,88	4050,00	554,40	2059,11	2000	4000*
Z3 sag	1+330,00	_	554,40	5231,93	1500	7000
Z4 sag	2+380,00	-	554,40	8234,91	1500	15000
Z5 sag	2+718,36	_	554,40	2514,70	1500	3500

The list of calculations of the radiuses of the vertical curves

* - due to the lack of ensuring the required visibility, it is necessary to apply the appropriate authority for a derogation from the Building Law

Values of the geometric parameters of the grade line:

a) tangent of the vertical curve

$$T = R \cdot tg \frac{\alpha}{2}$$
 [m], where:

T - tangent of the vertical curve [m]

R - radius of the vertical curve [m]

 α - angle of bend of the grade line [%]

$$T = 3500 \cdot tg \,\frac{0.04306}{2} = 75,36m$$

b) external of the vertical curve

$$B = \frac{T^2}{2R}$$
 [m], where:

B- external of the vertical curve [m] T- tangent of the vertical curve [m] R- radius of the vertical curve [m]

$$B = \frac{75,36^2}{2 \cdot 3500} = 0,81m$$

External must be greater than 0.05 m (technological condition)

c) length of the vertical curve

 $\underline{L} = 2 \cdot T$ [m], where

- $\boldsymbol{k}-\text{length}$ of the vertical curve [m]
- T- tangent of the vertical curve [m]

L = 2.75,36 = 150,72m

Curve no.	Mileage	R [m]	α [rad]	T [m]	B [m]	Ł [m]
Curve 1 sag	0+230,00	3500	0,04306	75,36	0,81	150,72
Curve 2 crest	0+639,88	4000	0,02914	58,28	0,42	116,56
Curve 3 sag	1+330,00	7000	0,01147	40,14	0,12	80,28
Curve 4 sag	2+380,00	15000	0,00729	54,65	0,10	109,29
Curve 5 sag	2+718,36	3500	0,02386	41,76	0,25	83,51

List of characteristic values of the vertical curves

Curve no.	Mileage	T [m]	Mileage beginning of curve	Mileage end of curve
Curve 1 sag	0+230,00	75,36	0+154,64	0+305,36
Curve 2 crest	0+639,88	58,28	0+581,60	0+698,16
Curve 3 sag	1+330,00	40,14	1+289,86	1+370,14
Curve 4 sag	2+380,00	54,65	2+325,35	2+434,65
Curve 5 sag	2+718,36	41,76	2+676,60	2+760,12

Intermediate coordinates of the vertical curves:

a) coordinates of the grade line on the beginning and the end of vertical curve

 $H_{PL} = H_Z - i_n \cdot T \quad [m]$

$$H_{KE} = H_Z + i_{n+1} \cdot T$$
 [m], where:

 H_{PE} – coordinates of the grade line on the beginning of vertical curve [m]

H_{KL} – coordinates of the grade line on the end of vertical curve [m]

 $H_{PL} = H_{BC} ; H_{KL} = H_{EC}$

 i_n- slope of the grade line before the bend [%]

 $i_{n+1}-$ slope of the grade line after the bend [%]

T - tangent of the vertical curve [m]

$$H_{PL} = 638,00 - (-0,03696) \cdot 75,36 = 640,79m$$

$$H_{\kappa t} = 638,00 + 0,00610 \cdot 75,36 = 638,46m$$

Curve no.	H _Z [m]	i before bend [-]	i after bend [-]	T [m]	H _{PŁ} [m]	H _{KŁ} [m]
Curve 1 sag	638,00	-0,03696	0,00610	75,36	640,79	638,46
Curve 2 crest	640,50	0,00610	-0,02304	58,28	640,14	639,16
Curve 3 sag	624,60	-0,02304	-0,01157	40,14	625,52	624,14
Curve 4 sag	612,45	-0,01157	-0,00429	54,65	613,08	612,22
Curve 5 sag	611,00	-0,00429	0,01957	41,76	611,18	611,82

b) intermediate coordinates of the vertical curves

$$y_{i} = \pm \frac{x_{i}^{2}}{2 \cdot R} [m]$$
$$H_{i} = H_{mi} + y_{i} [m]$$

- $H_i-\mbox{ ordinate of the grade line after drawing the vertical curve [m] }$
- $H_m-\mbox{ ordinate of the grade line before drawing the vertical curve [m] }$
- x_i- distance from the beginning of the vertical curve [m]
- $y_i \mbox{ ordinate of the intermediate point on the vertical curve [m]}$
- R- radius of the vertical curve [m]

$$y_i = -\frac{50^2}{2 \cdot 4000} = -0.31m$$
$$H_i = 640.45 + (-0.31) = 640.14 m$$

For a crest curve we substitute "+" and for a sag curve "-".

Point	Mileage	Х	у	H _m	Н
BC	0+154,64	0	0,00	640,79	640,79
	0+164,64	10	0,01	640,42	640,43
	0+174,64	20	0,06	640,05	640,10
	0+184,64	30	0,13	639,68	639,80
	0+194,64	40	0,23	639,31	639,54
	0+204,64	50	0,36	638,94	639,29
	0+214,64	60	0,51	638,57	639,08
	0+224,64	70	0,70	638,20	638,90
Z1	0+230,00	75,36	0,81	638,00	638,81
	0+235,36	70	0,70	638,03	638,73
	0+245,36	60	0,51	638,09	638,61
	0+255,36	50	0,36	638,15	638,51
	0+265,36	40	0,23	638,22	638,44
	0+275,36	30	0,13	638,28	638,41
	0+285,36	20	0,06	638,34	638,39
	0+295,36	10	0,01	638,40	638,41
EC	0+305,36	0	0,00	638,46	638,46

Source: https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto,q_auto,f_auto/gigs2/119097999

THANK YOU FOR YOUR ATTENTION